解:(Ⅰ)當時..,------2分 查看更多

 

題目列表(包括答案和解析)

已知:,當時,

時,

(1)求的解析式(  6分  )

(2)c為何值時,的解集為R. (  6分  )

查看答案和解析>>

已知函數(shù)

(Ⅰ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;

(Ⅱ)令g(x)= f(x)-x2,是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;

(Ⅲ)當x∈(0,e]時,證明:

【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用。第一問中利用函數(shù)f(x)在[1,2]上是減函數(shù),的導函數(shù)恒小于等于零,然后分離參數(shù)求解得到a的取值范圍。第二問中,

假設存在實數(shù)a,使有最小值3,利用,對a分類討論,進行求解得到a的值。

第三問中,

因為,這樣利用單調(diào)性證明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)見解析

 

查看答案和解析>>

 (本題滿分15分)

).

(1)當時,證明:不是奇函數(shù);

(2)設是奇函數(shù),求的值;

 (3)在(2)的條件下,求不等式的解集.

查看答案和解析>>

 (本題滿分15分)

).

(1)當時,證明:不是奇函數(shù);

(2)設是奇函數(shù),求的值;

 (3)在(2)的條件下,求不等式的解集.

查看答案和解析>>

以下兩題任選一題:(若兩題都作,按第一題評分)
(一):在極坐標系中,圓ρ=2cosθ的圓心到直線θ=
π
3
(ρ∈R)的距離
3
2
3
2
;
(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當不等式f(x+2)≥0的解集為[-2,2]時,實數(shù)m的值為
2
2

查看答案和解析>>


同步練習冊答案