的條件下.記.問是否存在自然數(shù)m.M.使得不等式m<Rn<M對一切恒成立.若存在.求出M-m的最小值,否則請說明理由. 變式: 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前項和為Sn,且Sn=n2Sn,數(shù)列{bn}為等比數(shù)列,且b1=l,b4=64.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{an}滿足cn=ab,求數(shù)列{cn}的前項和Tn;
(3)在(2)的條件下,數(shù)列{cn}中是否存在三項,使得這三項成等差數(shù)列?若存在,求出此三項,若不存在,說明理由.

查看答案和解析>>

(2011•豐臺區(qū)二模)已知數(shù)列{an}的前n項和為Sn,且Sn=n2.數(shù)列{bn}為等比數(shù)列,且b1=1,b4=8.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=abn,求數(shù)列{cn}的前n項和Tn
(3)在(2)的條件下,數(shù)列{cn}中是否存在三項,使得這三項成等差數(shù)列?若存在,求出此三項;若不存在,說明理由.

查看答案和解析>>

(本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)

已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形。

(1)求橢圓方程;

(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于。證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

(本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)

已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形。

(1)求橢圓方程;

(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點。證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由。

 

 

查看答案和解析>>

已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形。

(1)求橢圓方程;   (2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點。證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>


同步練習冊答案