(Ⅱ)求證:. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實(shí)我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx

(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

(Ⅰ)求證:;
(Ⅱ)化簡:

查看答案和解析>>

(Ⅰ)求證:
(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實(shí)我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

A

B

C

D

A

D

C

C

D

B

二、填空題(每小題5分,共20分)

13、(1,2); 14、20; 15、21;16、

三、解答題

17、解:(Ⅰ)當(dāng)時(shí),有,又,所以 ……1分

當(dāng)時(shí),

           =

         

         所以,且當(dāng)時(shí),  ……3分

,因此數(shù)列{}是以1為首項(xiàng)

且公差為2的等差數(shù)列,所以  ……2分

(Ⅱ)證明:(1)當(dāng)時(shí),,,關(guān)系成立 ……1分

 (2)假設(shè)當(dāng)時(shí),關(guān)系成立,即,則

   ……1分  那么

   ,即當(dāng)時(shí)關(guān)系也成立

……3分  根據(jù)(1)和(2)知,關(guān)系式對任意N*都成立  ……1分

18、解:(Ⅰ)如圖,以C為原點(diǎn),CA,CB,CC1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,,

,,  ……1分

設(shè),則,,

即AM⊥BC,又因?yàn)?sub>,且,

所以 AM^平面  ……3分

(Ⅱ),因?yàn)?sub>,所以,得,

,可得平面的一個法向量為=  ……3分

,設(shè)平面的一個法向量為

,得,,令,得平面的一個法向量為=  ……3分設(shè)平面ABM與平面AB1C1所夾銳角為,

  ……2分

19、解:(Ⅰ)隨機(jī)變量甲、乙兩名運(yùn)動員選擇的泳道相隔數(shù)X的分布列為:

X

0

1

2

3

4

5

6

     ……6分

泳道相隔數(shù)X的期望為:

E(X)= ……2分

(Ⅱ)  ……4分

20、解:(Ⅰ)由  ……2分

可得直線的方程為,于是,

,,所以橢圓的方程為  ……2分

(Ⅱ)設(shè),由方程組,

      所以有,,且,即 ……2分

    

            ……2分

     因?yàn)?sub>,所以,又,所以是線段的中點(diǎn),

     點(diǎn)的坐標(biāo)為,即的坐標(biāo)是,因此

     直線的方程為,得點(diǎn)的坐標(biāo)為(0,),

     所以   ……2分

    因此

    所以當(dāng),即時(shí),取得最大值,最大值為 ……2分

21、解:(Ⅰ)

                     ……2分

,則為R上的單調(diào)遞增函數(shù);

,的解為,的解為,

此時(shí)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減;

,的解為的解為,

此時(shí)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減……3分

(Ⅱ)當(dāng)時(shí),,

因?yàn)?sub>,所以點(diǎn)(0,)不在曲線上,設(shè)過點(diǎn)的直線與曲線相切于點(diǎn),則切線方程為,所以有

,得……2分 令,

,

,得,,可得在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減,所以時(shí)取極大值

時(shí)取極小值,在時(shí)取極大值,又

所以的最大值 ……3分 

如圖,過點(diǎn)(0,)有且只有一條直線與曲線

相切等價(jià)于直線與曲線

有且只有一個交點(diǎn),又當(dāng)時(shí),,所以  ……2分

22、(Ⅰ)證明:因?yàn)锳B為⊙O直徑,

所以 ∠ACB=90°,即 AC⊥BC,

因?yàn)镈是弧的中點(diǎn),由垂徑定理

得OD⊥BC,因此OD∥AC  ……3分

又因?yàn)辄c(diǎn)O為AB的中點(diǎn),所以點(diǎn)E為

BC的中點(diǎn),所以O(shè)E=AC  ……2分

(Ⅱ)證明:連結(jié)CD,因?yàn)镻C是⊙O的切線,所以∠PCD=∠CAP,又∠P是公共角,所以 △PCD∽△PAC.得,得 ……3分

因?yàn)镈是弧的中點(diǎn),所以,因此   ……2分

23、解:(Ⅰ)曲線上的動點(diǎn)的坐標(biāo)為(,),坐標(biāo)原點(diǎn)(0,0),

     設(shè)P的坐標(biāo)為(),則由中點(diǎn)坐標(biāo)公式得,所以點(diǎn)P 的坐標(biāo)為(,)……3分

      因此點(diǎn)的軌跡的參數(shù)方程為為參數(shù),且),

消去參數(shù)得點(diǎn)軌跡的直角坐標(biāo)方程為 ……2分

(Ⅱ)由直角坐標(biāo)與極坐標(biāo)關(guān)系得直線的直角坐標(biāo)方程為

  ……2分 又由(Ⅰ)知點(diǎn)的軌跡為圓心在原點(diǎn)半徑為2的圓,

因?yàn)樵c(diǎn)(0,0)到直線的距離為

所以點(diǎn)到直線距離的最大值  ……3分

24、解:(Ⅰ)由題意得,即  得 ……2分

     因?yàn)?sub> 

所以的取值范圍是[0,6]   ……3分

(Ⅱ)

因?yàn)閷τ?sub>,由絕對值的三角不等式得

   ……3分

于是有,得,即的取值范圍是  ……2分

 

 

 

 

 

 

 


同步練習(xí)冊答案