(Ⅱ)若記數(shù)列的前n項(xiàng)和為.證明:16. 查看更多

 

題目列表(包括答案和解析)

數(shù)列的前n項(xiàng)和記為,前項(xiàng)和記為,對(duì)給定的常數(shù),若是與無(wú)關(guān)的非零常數(shù),則稱該數(shù)列是“類和科比數(shù)列”,
(理科做以下(1)(2)(3))
(1)、已知,求數(shù)列的通項(xiàng)公式(5分);
(2)、證明(1)的數(shù)列是一個(gè) “類和科比數(shù)列”(4分);
(3)、設(shè)正數(shù)列是一個(gè)等比數(shù)列,首項(xiàng),公比,若數(shù)列是一個(gè) “類和科比數(shù)列”,探究的關(guān)系(7分)

查看答案和解析>>

數(shù)列的前n項(xiàng)和記為,前項(xiàng)和記為,對(duì)給定的常數(shù),若是與無(wú)關(guān)的非零常數(shù),則稱該數(shù)列是“類和科比數(shù)列”,

(理科做以下(1)(2)(3))

(1)、已知,求數(shù)列的通項(xiàng)公式(5分);

(2)、證明(1)的數(shù)列是一個(gè) “類和科比數(shù)列”(4分);

(3)、設(shè)正數(shù)列是一個(gè)等比數(shù)列,首項(xiàng),公比,若數(shù)列是一個(gè) “類和科比數(shù)列”,探究的關(guān)系(7分)

                                                                                                        

 

查看答案和解析>>

數(shù)列的前n項(xiàng)和記為,前項(xiàng)和記為,對(duì)給定的常數(shù),若是與無(wú)關(guān)的非零常數(shù),則稱該數(shù)列是“類和科比數(shù)列”,
(理科做以下(1)(2)(3))
(1)、已知,求數(shù)列的通項(xiàng)公式(5分);
(2)、證明(1)的數(shù)列是一個(gè) “類和科比數(shù)列”(4分);
(3)、設(shè)正數(shù)列是一個(gè)等比數(shù)列,首項(xiàng),公比,若數(shù)列是一個(gè) “類和科比數(shù)列”,探究的關(guān)系(7分)

查看答案和解析>>

(1)若記數(shù)列{an}的前n項(xiàng)之和為Sn,試證明an=
Sn-Sn-1(n≥2)
S1(n=1)
;
(2)已知數(shù)列{an}的前n項(xiàng)之和為Sn=2n2-n,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

(1)若記數(shù)列{an}的前n項(xiàng)之和為Sn,試證明
(2)已知數(shù)列{an}的前n項(xiàng)之和為Sn=2n2-n,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

一.選擇題:本大題共12個(gè)小題,每小題5分,共60分.

ABCCB  ADCCD  BD

二.填空題:本大題共4個(gè)小題,每小題5分,共20分.

13. 6 ;14. 60 ;15.6ec8aac122bd4f6e;16 .446.

三、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

17. (Ⅰ)設(shè)6ec8aac122bd4f6e的公比為q(q>0),依題意可得

6ec8aac122bd4f6e解得6ec8aac122bd4f6e                                             (5分)

∴數(shù)列6ec8aac122bd4f6e的通項(xiàng)公式為6ec8aac122bd4f6e                                                          (6分)

(Ⅱ)6ec8aac122bd4f6e                                   (10分)

18. (Ⅰ)6ec8aac122bd4f6e(2分)∴6ec8aac122bd4f6e;   (4分)

當(dāng)6ec8aac122bd4f6e,即6ec8aac122bd4f6e,6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e單調(diào)遞增

∴函數(shù)6ec8aac122bd4f6e的單調(diào)遞增區(qū)間為6ec8aac122bd4f6e                                 (6分)

(Ⅱ)∵6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e     (10分)

∴當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e有最大值6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e.                    (12分)

19.(Ⅰ)記6ec8aac122bd4f6e表示甲以6ec8aac122bd4f6e獲勝;6ec8aac122bd4f6e表示乙以6ec8aac122bd4f6e獲勝,則6ec8aac122bd4f6e,6ec8aac122bd4f6e互斥,事件6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e     (6分)

6ec8aac122bd4f6e(Ⅱ)6ec8aac122bd4f6e記表示甲以6ec8aac122bd4f6e獲勝;6ec8aac122bd4f6e表示甲以6ec8aac122bd4f6e獲勝, 則6ec8aac122bd4f6e6ec8aac122bd4f6e互斥,事件6ec8aac122bd4f6e, ∴6ec8aac122bd4f6e(12分)

20.                    解法一:(Ⅰ)證明:在直三棱柱6ec8aac122bd4f6e中,

6ec8aac122bd4f6e面ABC,又D為AB中點(diǎn),∴CD⊥面6ec8aac122bd4f6e,∴CD⊥6ec8aac122bd4f6e,∵AB=6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e,

又DE∥6ec8aac122bd4f6e6ec8aac122bd4f6e⊥DE ,又DE∩CD =D

6ec8aac122bd4f6e⊥平面CDE                                     (6分)

(Ⅱ)由()知6ec8aac122bd4f6e⊥平面CDE,設(shè)6ec8aac122bd4f6e與DE交于點(diǎn)M ,

過B作BN⊥CE,垂足為N,連結(jié)MN , 則A1N⊥CE,故∠A1NM即為二面角6ec8aac122bd4f6e的平面角.                                                                        (9分) 

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,又由△ENM   △EDC得

6ec8aac122bd4f6e.   又∵6ec8aac122bd4f6e

在Rt△A1MN中,tan∠A1NM 6ec8aac122bd4f6e,                                            (12分)

故二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e.                                                     (12分)

6ec8aac122bd4f6e解法二:AC=BC=2,AB=6ec8aac122bd4f6e,可得AC⊥BC,故可以C為坐標(biāo)原點(diǎn)建立如圖所示直角

坐標(biāo)系C-xyz.則C(0,0,0),A(2,0,0),B(0,2,0),

D(1,1,0),E (0,2,6ec8aac122bd4f6e),6ec8aac122bd4f6e(2,0,6ec8aac122bd4f6e)(3分)

(Ⅰ)6ec8aac122bd4f6e(-2,2,-6ec8aac122bd4f6e),6ec8aac122bd4f6e(1,1,0),

6ec8aac122bd4f6e(0,2,6ec8aac122bd4f6e).∵6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e 又CE∩CD =C

6ec8aac122bd4f6e⊥平面CDE                            (6分)

 

 

(Ⅱ)設(shè)平面A1CE的一個(gè)法向量為n=(x,y,z),   6ec8aac122bd4f6e(2,0,6ec8aac122bd4f6e),

6ec8aac122bd4f6e(0,2,6ec8aac122bd4f6e).∴由n6ec8aac122bd4f6e,n6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e,n=(2,1,6ec8aac122bd4f6e)                         (9分)

又由(Ⅰ)知6ec8aac122bd4f6e(-2,2,-6ec8aac122bd4f6e)為平面DCE的法向量.

6ec8aac122bd4f6e等于二面角6ec8aac122bd4f6e的平面角.                          (11分)

6ec8aac122bd4f6e.                                       (12分)

二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e.                              (12分)

21.(6ec8aac122bd4f6e.由題意知6ec8aac122bd4f6e為方程6ec8aac122bd4f6e的兩根

6ec8aac122bd4f6e,得6ec8aac122bd4f6e                             (3分)

從而6ec8aac122bd4f6e,6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e;當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,在6ec8aac122bd4f6e,6ec8aac122bd4f6e上單調(diào)遞增.     (7分)

(Ⅱ)由()知6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,6ec8aac122bd4f6e6ec8aac122bd4f6e處取得極值,此時(shí)6ec8aac122bd4f6e,若存在6ec8aac122bd4f6e,使得6ec8aac122bd4f6e,

即有6ec8aac122bd4f6e就是6ec8aac122bd4f6e  解得6ec8aac122bd4f6e.              (12分)

故b的取值范圍是6ec8aac122bd4f6e.                                (12分)        

22. ()設(shè)橢圓方程為6ec8aac122bd4f6e(a>b>0),由已知c=1,

又2a= 6ec8aac122bd4f6e.   所以a=6ec8aac122bd4f6e,b2=a2-c2=1,

橢圓C的方程是6ec8aac122bd4f6e+ x2 =1.                                                                  (4分)

  (Ⅱ)若直線l與x軸重合,則以AB為直徑的圓是x2+y2=1,

若直線l垂直于x軸,則以AB為直徑的圓是(x+6ec8aac122bd4f6e)2+y2=6ec8aac122bd4f6e

6ec8aac122bd4f6e解得6ec8aac122bd4f6e即兩圓相切于點(diǎn)(1,0).

因此所求的點(diǎn)T如果存在,只能是(1,0).

事實(shí)上,點(diǎn)T(1,0)就是所求的點(diǎn).證明如下:                             (7分)

當(dāng)直線l垂直于x軸時(shí),以AB為直徑的圓過點(diǎn)T(1,0).

若直線l不垂直于x軸,可設(shè)直線l:y=k(x+6ec8aac122bd4f6e).

6ec8aac122bd4f6e即(k2+2)x2+6ec8aac122bd4f6ek2x+6ec8aac122bd4f6ek2-2=0.

記點(diǎn)A(x1,y1),B(x2,y2),則6ec8aac122bd4f6e

又因?yàn)?sub>6ec8aac122bd4f6e=(x1-1, y1), 6ec8aac122bd4f6e=(x2-1, y2),

6ec8aac122bd4f6e?6ec8aac122bd4f6e=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+6ec8aac122bd4f6e)(x2+6ec8aac122bd4f6e)

=(k2+1)x1x2+(6ec8aac122bd4f6ek2-1)(x1+x2)+6ec8aac122bd4f6ek2+1

=(k2+1) 6ec8aac122bd4f6e+(6ec8aac122bd4f6ek2-1) 6ec8aac122bd4f6e+ 6ec8aac122bd4f6e+1=0,       (11分)

所以TA⊥TB,即以AB為直徑的圓恒過點(diǎn)T(1,0).

所以在坐標(biāo)平面上存在一個(gè)定點(diǎn)T(1,0)滿足條件.                        (12分)

 

 


同步練習(xí)冊(cè)答案