(Ⅲ)求到平面的距離. 變式: 查看更多

 

題目列表(包括答案和解析)

已知點P是直角坐標平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線l1:x=-
a2
c
、點F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

已知點P是直角坐標平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線、點F(-c,0)、曲線C:,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷______ (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

現(xiàn)有變換公式T:可把平面直角坐標系上的一點P(x,y)變換到這一平面上的一點P′(x′,y′).
(1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標準方程,并求出其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標;
(2)若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.求(1)中的橢圓C在變換T下的所有不動點的坐標;
(3)在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換T下的不動點的存在情況和個數(shù).

查看答案和解析>>

現(xiàn)有變換公式T:
4
5
x+
3
5
y=x′
3
5
x-
4
5
y=y′
可把平面直角坐標系上的一點P(x,y)變換到這一平面上的一點P′(x′,y′).
(1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為2
2
,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標準方程,并求出其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標;
(2)若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.求(1)中的橢圓C在變換T下的所有不動點的坐標;
(3)在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換T下的不動點的存在情況和個數(shù).

查看答案和解析>>

定義變換T:可把平面直角坐標系上的點P(x,y)變換到這一平面上的點P′(x′,y′).特別地,若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.
(1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標準方程.并求出當時,其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標;
(2)當時,求(1)中的橢圓C在變換T下的所有不動點的坐標;
(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換T:,k∈Z)下的不動點的存在情況和個數(shù).

查看答案和解析>>


同步練習冊答案