(2)若在區(qū)間內(nèi)有兩個不同的極值點.求a 取值范圍, 查看更多

 

題目列表(包括答案和解析)

(理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個不同的實數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗證;
(2)若函數(shù)f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
(3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時成立:
①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

(15 分)

已知函數(shù)

(1)若在的圖象上橫坐標為的點處存在垂直于y 軸的切線,求a 的值;

(2)若在區(qū)間(-2,3)內(nèi)有兩個不同的極值點,求a 取值范圍;

(3)在(1)的條件下,是否存在實數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個交點,若存在,試出實數(shù)m 的值;若不存在,說明理由.

 

查看答案和解析>>

(15 分)
已知函數(shù)
(1)若在的圖象上橫坐標為的點處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個不同的極值點,求a 取值范圍;
(3)在(1)的條件下,是否存在實數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個交點,若存在,試出實數(shù)m 的值;若不存在,說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=x2+mx+1(m∈z),且關(guān)于x的方程f(x)=2在區(qū)間(-3,
12
)
內(nèi)有兩個不同的實根.
(1)求f(x)的解析式;
(2)設g(x)=m-|x2-1|-k,若g(x)有且僅有兩個零點,求k的取值范圍.

查看答案和解析>>

(本題滿分13 分)

    已知函數(shù)

   (1)若在的圖象上橫坐標為的點處存在垂直于y 軸的切線,求a 的值;

   (2)若在區(qū)間(-2,3)內(nèi)有兩個不同的極值點,求a 取值范圍;

   (3)在(1)的條件下,是否存在實數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個交點,若存在,試出實數(shù)m 的值;若不存在,說明理由.

 

 

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DACDA  DBA

二、填空題(每小題5 分,共35分)

9.     10.400     11.180    12.②④

13.     14.(i)(3分)    (ii)(2分)

15.(i)(3分);    (ii) (2分)

16.(1)

 ……………………4分

(2)令 ………………6分

解得:

所以,的單調(diào)遞增區(qū)間是…………8分

(3)由,……………………10分

所以,

解得:

所以,的取值集合……12分

17.解:(1)坐A 班車的三人中恰有2 人正點到達的概率為

P3(2)= C0.72×0.31 = 0.441 ……………………(6 分)

(2)記“A 班車正點到達”為事件M,“B 班車正點到達冶為事件N

則兩人中至少有一人正點到達的概率為

P = P(M?N)+ P(M?)+ P(?N)

= 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)

18.解:由已知得

所以數(shù)列{}是以1為首項,公差為1的等差數(shù)列;(2分)

=1+…………………………4分

(2)由(1)知 ……………………6分

 …………………………8分

 ……………………10分

所以:…………………………12分

19.解:M、N、Q、B的位置如右圖示。(正確標出給1分)

(1)∵ND//MB且ND=MB

∴四邊形NDBM為平行四邊形

∴MN//DB………………3分

∴BD平面PBD,MN

∴MN//平面PBD……………………4分

(2)∵QC⊥平面ABCD,BD平面ABCD,

∴BD⊥QC……………………5分

又∵BD⊥AC,

∴BD⊥平面AQC…………………………6分

∵AQ面AQC

∴AQ⊥BD,同理可得AQ⊥PB,

∵BDPD=B

∴AQ⊥面PDB……………………………8分

  • ∵在正方體中,PB=PB

    ∴PE⊥DB……………………10分

    ∵四邊形NDBM為矩形

    ∴EF⊥DB

    ∴∠PEF為二面角P―DB―M為平面角………………11分

    ∵EF⊥平面PMN

    ∴EF⊥PF

    設正方體的棱長為a,則在直角三角形EFP中

    …………………………13分

    解法2:設正方體的棱長為a,

    以D為坐標原點建立空間直角坐標系如圖:

    則點A(a,0,0),P(a,0,a),Q(0,a,a)…………9分

    ………………10分

    ∵PQ⊥面DBM,由(2)知AQ⊥面PDB

    分別為平面PDB、平面DBM的法向量

    ……………………12分

    ………………13分

    20.解:(1)由題意,可設橢圓的標準方程為……1分

    的焦點為F(1,0)

    ……………………3分

    所以,橢圓的標準方程為

    其離心率為 ……………………5分

    (2)證明:∵橢圓的右準線1的方程為:x=2,

    ∴點E的坐標為(2,0)設EF的中點為M,則

    若AB垂直于x軸,則A(1,y1),B(1,-y1),C(2,-y1

    ∴AC的中點為

    ∴線段EF的中點與AC的中點重合,

    ∴線段EF被直線AC平分,…………………………6分

    若AB不垂直于x軸,則可設直線AB的方程為

    …………………………7分

    ………………8分

    則有………………9分

    ……………………10分

    ∴A、M、C三點共線,即AC過EF的中點M,

    ∴線段EF被直線AC平分!13分

    21.解:(1)依題意,

    …………………………3分

    (2)若在區(qū)間(―2,3)內(nèi)有兩個不同的極值點,則方程在區(qū)間(―2,3)內(nèi)有兩個不同的實根,

    但a=0時,無極值點,

    ∴a的取值范圍為……………………8分

    (3)在(1)的條件下,a=1,要使函數(shù)的圖象恰有三個交點,等價于方程,

    即方程恰有三個不同的實根。

    =0是一個根,

    *        應使方程有兩個非零的不等實根,

    ………………12分

    *存在的圖象恰有三個交點…………………………13分

     


    同步練習冊答案