前項(xiàng)和為.若時(shí).不等式.求t的取值范圍. 查看更多

 

題目列表(包括答案和解析)

等差數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=3,前n項(xiàng)和為Sn,等比數(shù)列{bn}中,b1=1,且b2•S2=16,{ban}是公比為4的等比數(shù)列
(1)求an與bn
(2)設(shè)Cn=
1
S1
+
1
S2
+
1
S2
+…+
1
Sn
,若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
3
4
>Cn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

等差數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=3,前n項(xiàng)和為Sn,等比數(shù)列{bn}中,b1=1,且b2•S2=16,{ban}是公比為4的等比數(shù)列
(1)求an與bn
(2)設(shè)Cn=
1
S1
+
1
S2
+
1
S2
+…+
1
Sn
,若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
3
4
>Cn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

等差數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=3,前n項(xiàng)和為Sn,等比數(shù)列{bn}中,b1=1,且b2•S2=16,{}是公比為4的等比數(shù)列
(1)求an與bn
(2)設(shè),若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+>Cn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

已知等比數(shù)列{an}的公比為q,Sn是{an}的前n項(xiàng)和.
(1)若a1=1,q>1,求數(shù)學(xué)公式的值;
(2)若a1=1;對(duì)①數(shù)學(xué)公式和②數(shù)學(xué)公式時(shí),分別研究Sn的最值,并說(shuō)明理由;
(3)若首項(xiàng)a1=10,設(shè)數(shù)學(xué)公式,t是正整數(shù),t滿足不等式|t-63|<62,且對(duì)于任意正整數(shù)n有9<Sn<12成立,問(wèn):這樣的數(shù)列{an}有幾個(gè)?

查看答案和解析>>

已知等比數(shù)列{an}的公比為q,Sn是{an}的前n項(xiàng)和.
(1)若a1=1,q>1,求
lim
n→∞
an
Sn
的值;
(2)若a1=1;對(duì)①q=
1
2
和②q=-
1
2
時(shí),分別研究Sn的最值,并說(shuō)明理由;
(3)若首項(xiàng)a1=10,設(shè)q=
1
t
,t是正整數(shù),t滿足不等式|t-63|<62,且對(duì)于任意正整數(shù)n有9<Sn<12成立,問(wèn):這樣的數(shù)列{an}有幾個(gè)?

查看答案和解析>>


同步練習(xí)冊(cè)答案