.且過.則橢圓的方程為 , 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且

(Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;

 (Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請說明理由.

 

查看答案和解析>>

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且
(Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請說明理由.

查看答案和解析>>

精英家教網(wǎng)若橢圓E1
x2
a
2
1
+
y2
b
2
1
=1
和橢圓E2
x2
a
2
2
+
y2
b
2
2
=1
滿足
a2
a1
=
b2
b1
=m
 (m>0)
,則稱這兩個橢圓相似,m稱為其相似比.
(1)求經(jīng)過點(diǎn)(2,
6
)
,且與橢圓
x2
4
+
y2
2
=1
相似的橢圓方程;
(2)設(shè)過原點(diǎn)的一條射線l分別與(1)中的兩個橢圓交于A、B兩點(diǎn)(其中點(diǎn)A在線段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)對于真命題“過原點(diǎn)的一條射線分別與相似比為2的兩個橢圓C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B兩點(diǎn),P為線段AB上的一點(diǎn),若|OA|、|OP|、|OB|成等差數(shù)列,則點(diǎn)P的軌跡方程為
x2
32
+
y2
(
3
2
2
)
2
=1
”.請用推廣或類比的方法提出類似的一個真命題,并給予證明.

查看答案和解析>>

已知橢圓的離心率為,且其焦點(diǎn)F(c,0)(c>0)到相應(yīng)準(zhǔn)線l的距離為3,過焦點(diǎn)F的直線與橢圓交于A、B兩點(diǎn)。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)M為右頂點(diǎn),則直線AM、BM與準(zhǔn)線l分別交于P、Q兩點(diǎn),(P、Q兩點(diǎn)不重合),求證:

查看答案和解析>>

已知橢圓的左右兩焦點(diǎn)分別為是橢圓上一點(diǎn),且在軸上方,

(1)求橢圓的離心率的取值范圍;

(2)當(dāng)取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;

(3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.試探究直線是否過定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn);否則,請說明理由.

 

查看答案和解析>>


同步練習(xí)冊答案