解得 ∴x=2或3或4.民政局安排甲.乙兩種貨車時有3種方案.設(shè)計方案分別為:①甲車2輛.乙車6輛,②甲車3輛.乙車5輛,③甲車4輛.乙車4輛. (3)3種方案的運費分別為: ①2×4000+6×3600=29600,②3×4000+5×3600=30000, 查看更多

 

題目列表(包括答案和解析)

解:(1)由拋物線C1得頂點P的坐標(biāo)為(2,5)………….1分

∵點A(-1,0)在拋物線C1上∴.………………2分

(2)連接PM,作PH⊥x軸于H,作MG⊥x軸于G..

∵點P、M關(guān)于點A成中心對稱,

∴PM過點A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴頂點M的坐標(biāo)為(,5).………………………3分

∵拋物線C2與C1關(guān)于x軸對稱,拋物線C3由C2平移得到

∴拋物線C3的表達(dá)式.  …………4分

(3)∵拋物線C4由C1繞x軸上的點Q旋轉(zhuǎn)180°得到

∴頂點N、P關(guān)于點Q成中心對稱.

 由(2)得點N的縱坐標(biāo)為5.

設(shè)點N坐標(biāo)為(m,5),作PH⊥x軸于H,作NG⊥x軸于G,作PR⊥NG于R.

∵旋轉(zhuǎn)中心Q在x軸上,

∴EF=AB=2AH=6.

 ∴EG=3,點E坐標(biāo)為(,0),H坐標(biāo)為(2,0),R坐標(biāo)為(m,-5).

根據(jù)勾股定理,得

     

  

       

①當(dāng)∠PNE=90º時,PN2+ NE2=PE2

解得m=,∴N點坐標(biāo)為(,5)

②當(dāng)∠PEN=90º時,PE2+ NE2=PN2

解得m=,∴N點坐標(biāo)為(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

綜上所得,當(dāng)N點坐標(biāo)為(,5)或(,5)時,以點P、N、E為頂點的三角形是直角三角形.…………………………………………………………………………………8分

查看答案和解析>>

閱讀以下材料并填空:
問題:當(dāng)x滿足什么條件時,x>
1
x
?
解:設(shè)y1=x,y2=
1
x
則在同一直角坐標(biāo)系中畫出這兩個函數(shù)的草圖.
聯(lián)立兩個函數(shù)的解析式得:
y1=x
y2=
1
x
,解得
x=1
y=1
x=-1
y=-1
∴兩個圖象的交點為(1,1)和(-1,-1)
∴由圖可知,當(dāng)-1<x<0或x>1時,x>
1
x
(1)上述解題過程用的數(shù)學(xué)思想方法是
 
;
(2)根據(jù)上述解題過程,試猜想x<
1
x
時,x的取值范圍是
 
;
(3)試根據(jù)上述解題方法,當(dāng)x滿足什么條件時,x2
1
x
.(要求畫出草圖)
精英家教網(wǎng)

查看答案和解析>>

(10分)閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時,x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,
解得y1=1,y2=4.當(dāng)y=1時,x2-1=1,
∴x2=2,
∴x=±;當(dāng)y=4時,x2-1=4,
∴x2=5,
∴x=±,
故原方程的解為  x1,x2=-,x3,x4=-
上述解題方法叫做換元法;
請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

查看答案和解析>>

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,

解得y1=1,y2=4.當(dāng)y=1時,x2-1=1,

∴x2=2,

∴x=±;當(dāng)y=4時,x2-1=4,

∴x2=5,

∴x=±,

故原方程的解為  x1,x2=-,x3,x4=-

上述解題方法叫做換元法;

請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

 

查看答案和解析>>


同步練習(xí)冊答案