題目列表(包括答案和解析)
觀察方程(2x+1)2=(x-3)2的特點(diǎn),可將2x+1和x-3分別當(dāng)作一個(gè)整體,將右邊的項(xiàng)移到左邊,便可用________公式進(jìn)行分解因式,解得方程的根為________.這種方法你想到了嗎?
巳知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對應(yīng)點(diǎn)0'恰好落在該拋物線的對稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對應(yīng)相等(即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對稱軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)l是大于3的常數(shù),試問:是否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)?請說明理由.
【解析】二次函數(shù)的綜合運(yùn)用
巳知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對應(yīng)點(diǎn)0'恰好落在該拋物線的對稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對應(yīng)相等(即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對稱軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)l是大于3的常數(shù),試問:是否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)?請說明理由.
【解析】二次函數(shù)的綜合運(yùn)用
人教版教科書對分式方程驗(yàn)根的歸納如下:
“解分式方程時(shí),去分母后所得整式方程的解有可能使原分式方程中的分母為0,因此應(yīng)如下檢驗(yàn):將整式方程的解代入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解.”
請你根據(jù)對這段話的理解,解決下面問題:
已知關(guān)于x的方程-=0無解,方程x2+kx+6=0的一個(gè)根是m.
(1)求m和k的值;
(2)求方程x2+kx+6=0的另一個(gè)根.
已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個(gè)單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請你結(jié)合這個(gè)新的圖象回答:當(dāng)直線y=x+b(b<k)與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com