我們運用圖(I)圖中大正方形的面積可表示為(a+b)
2,也可表示為c
2+4×
ab,即(a+b)
2=c
2+4×
ab由此推導出一個重要的結論a
2+b
2=c
2,這個重要的結論就是著名的“勾股定理”.這種根據圖形可以極簡單地直觀推論或驗證數學規(guī)律和公式的方法,簡稱“無字證明”.
(1)請你用圖(Ⅱ)(2002年國際數字家大會會標)的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).
(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+y)
2=x
2+2xy+y
2(3)現有足夠多的邊長為x的小正方形,邊長為y的大正方形以及長為x寬為y的長方形,請你自己設計圖形的組合,用其面積表達式驗證:(x+y)(x+2y)=x
2+3xy+2y
2.