∴AB=4.∴在Rt△POC中.∵OP=PA-OA=2-1=1. 查看更多

 

題目列表(包括答案和解析)

(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中點,把一三角尺的直角頂點放在點M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點A、B.
(1)求證:MA=MB;
(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,△AOB的周長是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

在Rt△POQ中,OP=OQ=4,M是PQ的中點,把一三角尺的直角頂點放在點M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點A、B.
 
(1)求證:MA=MB;
(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,△AOB的周長是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

在Rt⊿POQ中,OP=OQ=4,M是PQ中點,把一三角尺的直角頂點放在點M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與⊿POQ的兩直角邊分別交于點A、B,
(1)求證:MA=MB
(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,⊿AOB的周長是否存在最小值,若存在,求出最小值,若不          
存在。請說明理由。
       

查看答案和解析>>

在Rt△POQ中,OP=OQ=4,M是PQ的中點,把一三角尺的直角頂點放在點M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點A、B.

 

(1)求證:MA=MB;

(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,△AOB的周長是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

 

查看答案和解析>>

在Rt△POQ中,OP=OQ=4,M是PQ的中點,把一三角尺的直角頂點放在點M處,以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點A、B.
(1)求證:MA=MB;
(2)連接AB,探究:在旋轉(zhuǎn)三角尺的過程中,△AOB的周長是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案