題目列表(包括答案和解析)
1 |
2 |
1 |
4 |
1 |
8 |
1 |
2n |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
16 |
1 |
2n |
2 |
3 |
2 |
3 |
2 |
9 |
2 |
27 |
2 |
3n |
1 |
3 |
2 |
9 |
4 |
27 |
8 |
81 |
2n-1 |
3n |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
2n |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
8 |
1 |
2n |
1 |
2n |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
2n |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
2n |
1 |
2n |
1 |
2n |
2 |
3 |
2 |
9 |
2 |
27 |
2 |
3n |
1 |
3n |
1 |
3n |
1 |
3 |
2 |
9 |
4 |
27 |
2n-1 |
3n |
2n |
3n |
2n |
3n |
利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.我們剛學(xué)過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結(jié)合的思想解決下列問題嗎?
如圖,一個(gè)邊長為1的正方形,依次取正方形的根據(jù)圖示我們可以知道:第一次取走后還剩,即=1-;前兩次取走+后還剩,即+=1-;前三次取走++后還剩,即++=1-;……前n次取走后,還剩 ,
即 = .
利用上述計(jì)算:
(1) = .
(2) = .
(3) 2-22-23-24-25-26-…-22011+22012 (本題寫出解題過程)
利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.我們剛學(xué)過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結(jié)合的思想解決下列問題嗎?
如圖,一個(gè)邊長為1的正方形,依次取正方形的根據(jù)圖示我們可以知道:第一次取走后還剩,即=1-;前兩次取走+后還剩,即+=1-;前三次取走++后還剩,即++=1-;……前n次取走后,還剩 ,
即 = .
利用上述計(jì)算:
(1) = .
(2) = .
(3) 2-22-23-24-25-26-…-22011+22012(本題寫出解題過程)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com