題目列表(包括答案和解析)
(2011四川內(nèi)江,加試5,12分)同學們,我們曾經(jīng)研究過n×n的正方形網(wǎng)格,得到了網(wǎng)格中正方形的總數(shù)的表達式為12+22+32+…+n2.但n為100時,應如何計算正方形的具體個數(shù)呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經(jīng)知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)時,我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+
=1+0×1+2+1×2+3+2×3+
=(1+2+3+4)+( )
……
(2)歸納結論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n
=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n
=( ) +
= +
=×
(3)實踐應用:
通過以上探究過程,我們就可以算出當n為100時,正方形網(wǎng)格中正方形的總個數(shù)是 .
(2011四川內(nèi)江,加試5,12分)同學們,我們曾經(jīng)研究過n×n的正方形網(wǎng)格,得到了網(wǎng)格中正方形的總數(shù)的表達式為12+22+32+…+n2.但n為100時,應如何計算正方形的具體個數(shù)呢?下面我們就一起來探究并解決這個問題.首先,通過探究我們已經(jīng)知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)時,我們可以這樣做:
(1)觀察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+
=1+0×1+2+1×2+3+2×3+
=(1+2+3+4)+( )
……
(2)歸納結論:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n
=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n
=( ) +
= +
=×
(3)實踐應用:
通過以上探究過程,我們就可以算出當n為100時,正方形網(wǎng)格中正方形的總個數(shù)是 .
(2011四川內(nèi)江,17,7分)計算:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com