直線AC與平面PAD所成角即為 查看更多

 

題目列表(包括答案和解析)

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(Ⅰ)證明:AE⊥PD;
(Ⅱ)若直線PB與平面PAD所成角的正弦值為
6
4
△ABC中,|AB|=|AC|=
7
2
,|BC|=2
,求二面角E-AF-C的余弦值.

查看答案和解析>>

(2012•鐘祥市模擬)在四棱錐P-ABCD中,底面ABCD是菱形,AC∩BD=O.
(I)若平面PAC⊥平面ABCD,求證:PB=PD;
(II)若∠DAB=60°,PA=PC,PB=PD,AB=2,PO=1,求直線AB與平面PAD所成角的正弦值;
(III)在棱PC上是否存在點(diǎn)M(異于點(diǎn)C),使得BM∥平面PAD.若存在,求出
PMPC
的值;若不存在,說(shuō)明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC的中點(diǎn).
(1)求證:PA∥平面BDM;
(2)求直線AC與平面ADM所成角的正弦值.

查看答案和解析>>

在四棱錐P-ABCD中,底面ABCD是菱形,AC∩BD=O.
(I)若平面PAC⊥平面ABCD,求證:PB=PD;
(II)若∠DAB=60°,PA=PC,PB=PD,AB=2,PO=1,求直線AB與平面PAD所成角的正弦值;
(III)在棱PC上是否存在點(diǎn)M(異于點(diǎn)C),使得BM∥平面PAD.若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC的中點(diǎn).
(1)求證:PA∥平面BDM;
(2)求直線AC與平面ADM所成角的正弦值.

查看答案和解析>>


同步練習(xí)冊(cè)答案