18.解:(1)因為點的坐標為. 查看更多

 

題目列表(包括答案和解析)

已知點A、B、C的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),

α∈(,).

(1)若||=||,求角α的值;

(2)若·=-1,求的值.

【解析】第一問中利用向量的模相等,可以得到角α的值。

第二問中,·=-1,則化簡可知結(jié)論為

解:因為點A、B、C的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),

α∈(,).||=|| 所以α=.

(2)因為·=-1,.

 

查看答案和解析>>

已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設(shè)是其橢圓上的任意一點,當為鈍角時,求的取值范圍。

【解析】解:因為第一問中,利用橢圓的性質(zhì)由   所以橢圓方程可設(shè)為:,然后利用

    

      橢圓方程為

第二問中,當為鈍角時,,    得

所以    得

解:(Ⅰ)由   所以橢圓方程可設(shè)為:

                                       3分

    

      橢圓方程為             3分

(Ⅱ)當為鈍角時,,    得   3分

所以    得

 

查看答案和解析>>

給出以下命題:
(1)α,β表示平面,a,b,c表示直線,點M;若a?α,b?β,α∩β=c,a∩b=M,則M∈c;
(2)平面內(nèi)有兩個定點F1(0,3),F(xiàn)2(0-3)和一動點M,若||MF1|-|MF2||=2a(a>0)是定值,則點M的軌跡是雙曲線;
(3)在復(fù)數(shù)范圍內(nèi)分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)
;
(4)拋物線y2=12x上有一點P到其焦點的距離為6,則其坐標為P(3,±6).
以上命題中所有正確的命題序號為
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

給出以下命題:
(1)α,β表示平面,a,b,c表示直線,點M;若a?α,b?β,α∩β=c,a∩b=M,則M∈c;
(2)平面內(nèi)有兩個定點F1(0,3),F(xiàn)2(0-3)和一動點M,若||MF1|-|MF2||=2a(a>0)是定值,則點M的軌跡是雙曲線;
(3)在復(fù)數(shù)范圍內(nèi)分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)
;
(4)拋物線y2=12x上有一點P到其焦點的距離為6,則其坐標為P(3,±6).
以上命題中所有正確的命題序號為______.

查看答案和解析>>

2.A解析:由知函數(shù)在上有零點,又因為函數(shù)在(0,+)上是減函數(shù),所以函數(shù)y=f(x) 在(0,+)上有且只有一個零點不妨設(shè)為,則,又因為函數(shù)是偶函數(shù),所以=0并且函數(shù)在(0,+)上是減函數(shù),因此-是(-,0)上的唯一零點,所以函數(shù)共有兩個零點

下列敘述中,是隨機變量的有(    )

①某工廠加工的零件,實際尺寸與規(guī)定尺寸之差;②標準狀態(tài)下,水沸騰的溫度;③某大橋一天經(jīng)過的車輛數(shù);④向平面上投擲一點,此點坐標.

A.②③         B.①②     C.①③④      。模佗

查看答案和解析>>


同步練習(xí)冊答案