由(2)知:BC⊥平面A′EC 又A′A平面A′EC ∴BC⊥AA′ ∴A′A⊥平面A′BC ---------------14分 查看更多

 

題目列表(包括答案和解析)

18、如圖,E、F分別為直角三角形ABC的直角邊AC和斜邊AB的中點,沿EF將△AEF折起到△A′EF的位置,連接A′B、A′C,P為A′C的中點.
(1)求證:EP∥平面A′FB;
(2)求證:平面A′EC⊥平面A′BC;
(3)求證:AA′⊥平面A′BC.

查看答案和解析>>

如圖,E、F分別為直角三角形ABC的直角邊AC和斜邊AB的中點,沿EF將△AEF折起到△A′EF的位置,連接A′B、A′C,P為A′C的中點.
(1)求證:EP∥平面A′FB.
(2)求證:平面A′EC⊥平面A′BC.

查看答案和解析>>

如圖,E、F分別為直角三角形ABC的直角邊AC和斜邊AB的中點,沿EF將△AEF折起到△A′EF的位置,連接A′B、A′C,P為A′C的中點.
(1)求證:EP∥平面A′FB.
(2)求證:平面A′EC⊥平面A′BC.

查看答案和解析>>

如圖,E、F分別為直角三角形ABC的直角邊AC和斜邊AB的中點,沿EF將△AEF折起到△A′EF的位置,連接A′B、A′C,P為A′C的中點.
(1)求證:EP∥平面A′FB.
(2)求證:平面A′EC⊥平面A′BC.

查看答案和解析>>

如圖,E、F分別為直角三角形ABC的直角邊AC和斜邊AB的中點,沿EF將△AEF折起到△A′EF的位置,連接A′B、A′C,P為A′C的中點.
(1)求證:EP∥平面A′FB;
(2)求證:平面A′EC⊥平面A′BC;
(3)求證:AA′⊥平面A′BC.

查看答案和解析>>

1.解:依題設有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1),,由

所以

為圓的直角坐標方程.  ……………………………………3分

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

3.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率為

(2)隨機變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機變量的分布列為

 

2

3

4

P

                    …………………………10分

4.(必做題)(本小題滿分10分)

(1),,,  ,

              ……………………………………3分

(2)平面BDD1的一個法向量為

設平面BFC1的法向量為

得平面BFC1的一個法向量

  ∴所求的余弦值為    ……6分

(3)設

,由

,

    

時,

時,∴   ……………………………………10分


同步練習冊答案