題目列表(包括答案和解析)
圖的曲線表示一個騎自行車離家的距離與時間的關(guān)系.騎車者9時離開家,15時回家,根據(jù)這個曲線圖,請你回答下列頭問題:
(1)最初到達離家最遠的地方是什么時間?離家多遠?
(2)何時開始第一次休息?休息多長時間?
(3)第一次休息時,離家多遠?
(4)11∶00到12∶00他騎了多少千米?
(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分別是多少?
(6)他在哪段時間里停止前進并休息用午餐?
圖的曲線表示一個騎自行車離家的距離與時間的關(guān)系.騎車者
9時離開家,15時回家,根據(jù)這個曲線圖,請你回答下列問題:(1)最初到達離家最遠的地方是什么時間?離家多遠?
(2)
何時開始第一次休息?休息多長時間?(3)
第一次休息時,離家多遠?(4)1
1∶00到12∶00他騎了多少千米?(5)
他在9∶00~10∶00和10∶00~10∶30的平均速度分別是多少?(6)
他在哪段時間里停止前進并休息用午餐?(本小題滿分13分)
某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(I) 求這次鉛球測試成績合格的人數(shù);
(II) 用此次測試結(jié)果估計全市畢業(yè)生的情況.若從 今年的高中畢業(yè)生中隨機抽取兩名,記表示兩人中成績不合格的人數(shù),求的分布列及數(shù)學(xué)期望;
(III) 經(jīng)過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠的概率.
(本小題滿分12分)
某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(1) 求這次鉛球測試成績合格的人數(shù);
(2) 用此次測試結(jié)果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機抽取兩名,記表示兩人中成績不合格的人數(shù),求的分布列及數(shù)學(xué)期望;
(3) 經(jīng)過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠的概率.
(本小題滿分10分)
某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如下表:
時間(將第x天記為x) x |
1 |
10 |
11 |
18 |
單價(元/件)P |
9 |
0 |
1 |
8 |
而這20天相應(yīng)的銷售量Q(百件/天)與x對應(yīng)的點(x,Q)在如圖所示的半圓上.
(1)寫出每天銷售y(元)與時間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此測試結(jié)果應(yīng)將單價P設(shè)定為多少元為好?(結(jié)果精確到1元)
1.解:依題設(shè)有: ………………………………………4分
令,則 …………………………………………5分
…………………………………………7分
………………………………10分
2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1),,由得.
所以.
即為圓的直角坐標(biāo)方程. ……………………………………3分
同理為圓的直角坐標(biāo)方程. ……………………………………6分
(2)由
相減得過交點的直線的直角坐標(biāo)方程為. …………………………10分
3.(必做題)(本小題滿分10分)
解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)”為事件的, 則其概率為 …………………………………………4分
答:恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)的概率為
(2)隨機變量
……………………5分
…………………………6分
………………………………7分
∴隨機變量的分布列為
2
3
4
P
∴ …………………………10分
4.(必做題)(本小題滿分10分)
(1),,, ,
……………………………………3分
(2)平面BDD1的一個法向量為
設(shè)平面BFC1的法向量為
∴
取得平面BFC1的一個法向量
∴所求的余弦值為 ……6分
(3)設(shè)()
,由得
即,
當(dāng)時,
當(dāng)時,∴ ……………………………………10分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com