題目列表(包括答案和解析)
如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點,PE=2EC。
(I) 證明PC平面BED;
(II) 設二面角A-PB-C為90°,求PD與平面PBC所成角的大小
【解析】本試題主要是考查了四棱錐中關于線面垂直的證明以及線面角的求解的運用。
從題中的線面垂直以及邊長和特殊的菱形入手得到相應的垂直關系和長度,并加以證明和求解。
解法一:因為底面ABCD為菱形,所以BDAC,又
【點評】試題從命題的角度來看,整體上題目與我們平時練習的試題和相似,底面也是特殊的菱形,一個側面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學生來說就是比較有點難度的,因此最好使用空間直角坐標系解決該問題為好。
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(1)若,,,求方程在區(qū)間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量、和的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(1)若,,,求方程在區(qū)間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量、和的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(1)若,,,求方程在區(qū)間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量、和的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
說明:
一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題
的主要考查內容比照評分標準制訂相應的評分細則.
二、對計算題當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的
內容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數(shù)的一半;如
果后續(xù)部分的解答有較嚴重的錯誤,就不再給分.
三、解答右端所注分數(shù),表示考生正確做到這一步應得累加分.
四、只給整數(shù)分數(shù),選擇題和填空題不給中間分數(shù).
一、選擇題(每小題5分,滿分60分)
1.C 2.D 3.D 4.C 5.B 6.B 7.A 8.D 9.B 10.B 11.A 12.C
簡答與提示:
1.,故選C.
2.∵
∴,故選D.
3.因為四個命題均有線在面內的可能,所以均不正確,故選D.
4.,故選C.
5.利用疊加法及等比數(shù)列求和公式,可求得,故選B.
6.以為直徑的圓與圓的公共弦即為所求,直線方程為,故
選B.
7.,將的圖象先向左平移個單位得到
的圖象,再沿軸將橫坐標壓縮到原來的倍(縱坐標不變)得到的圖象,故選A.
8.在點(0,一1)處目標函數(shù)取得最大值為9,故選D.
9.先在后三位中選兩個位置填兩個數(shù)字“
法,再決定用數(shù)字“
故選B.
10.依題意,∴,故選B.
11.因為函數(shù)在其定義域內為減函數(shù),所以
恒成立,即為減函數(shù)(切線斜率減小),故選A.
12.,
∵,∴,當A、F、B
三點共線時取得最小值,故選C.
二、填空題(每題5分.共20分}
13.3 14. 15.28 16.①③
簡答與提示:
13.∵V正四面體 ,∴.
14.∵,∴,∴.
15.∵,
∴,∴.
16.∵,
∴,
∵,
∴,故①③正確.
三、解答題(滿分70分)
17.本小題主要考查三角函數(shù)的基本公式、三角恒等變換、三角函數(shù)圖象及性質.
解:(1)∵
(4分)
∴.
(2)當,即時,, , (6分)
當,即,,
∴函數(shù)的值域為[,1]. (10分)
18.本小題主要考查概率的基本知識與分類思想,考查運用數(shù)學知識分析問題解決問題的
能力.
解.(1)中一等獎的概率為, (2分)
中二等獎的概率為, (4分)
中三等獎的概率為, (6分)
∴搖獎一次中獎的概率為 (7分)
(2) 由(1)可知,搖獎一次不中獎的概率為 (9分)
設搖獎一次莊家所獲得的金額為隨機變量,則隨機變量的分布列為:
∴
∴搖獎一次莊家獲利金額的期望值為元 (12分)
19.本小題主要考查空間線面位置關系、異面直線所成角、二面角等基本知識,考查空間想象能力、邏輯思維能力和運算能力以及空間向量的應用.
解法一:(1)證明:
取中點為,連結、,
∵△是等邊三角形,
∴
又∵側面底面,
∴底面,
∴為在底面上的射影,
又∵,
,
∴,
∴,
∴,
∴.
(2)取中點,連結、, (6分)
∵.
∴.
又∵,,
∴平面,
∴,
∴是二面角的平面角. (9分)
∵,,
∴.
∴,
∴,
∴,
∴二面角的大小為 (12分)
解法二:證明:(1) 取中點為,中點為,連結,
∵△是等邊三角形,
∴,
又∵側面底面,
∴底面,
∴以為坐標原點,建立空間直角坐標系
如圖, (2分)
∵,△是等邊三角形,
∴,
∴.
∴.
∵
∴.
(2)設平面的法向量為
∵
∴
令,則,∴ (8分)
設平面的法向量為,
∵,
∴,
令,則,∴ (10分)
∴,
∴,
∴二面角的大小為. (12分)
20.本小題主要考查直線、橢圓等平面解析幾何的基礎知識,考查軌跡的求法以及綜合解題能力
解:(1)設,則
∵,∴,∴, (3分)
又,∴
∴曲線的方程為 (6分)
(2)由(1)可知,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com