查看更多

 

題目列表(包括答案和解析)

(本題滿分12分) 已知函數(shù)的定義域?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091009/20091009114523002.gif' width=48 height=21>,對(duì)于任意正數(shù)a、b,都有,其中p是常數(shù),且.,當(dāng)時(shí),總有.

(1)求(寫成關(guān)于p的表達(dá)式);

   (2)判斷上的單調(diào)性,并加以證明;

   (3)解關(guān)于的不等式 .

查看答案和解析>>

(本題滿分12分) 某漁業(yè)個(gè)體戶今年年初用96萬(wàn)元購(gòu)進(jìn)一艘漁船用于捕撈,規(guī)定這艘漁船的使用年限至多為15年. 第一年各種費(fèi)用之和為10萬(wàn)元,從第二年開(kāi)始包括維修費(fèi)用在內(nèi),每年所需費(fèi)用之和都比上一年增加3萬(wàn)元. 該船每年捕撈的總收入為45萬(wàn)元.

(1)該漁業(yè)個(gè)體戶從今年起,第幾年開(kāi)始盈利(即總收入大于成本及所有費(fèi)用的和)?

(2)在年平均利潤(rùn)達(dá)到最大時(shí),該漁業(yè)個(gè)體戶決定淘汰這艘漁船,并將船以10萬(wàn)元賣出,問(wèn):此時(shí)該漁業(yè)個(gè)體戶獲得的利潤(rùn)為多少萬(wàn)元?

(注:上述問(wèn)題中所得的年限均取整數(shù))

查看答案和解析>>

(本題滿分12分) 設(shè)數(shù)列的前項(xiàng)和為,滿足(N*),令.

(1)求證:數(shù)列為等差數(shù)列;   (2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

(本題滿分12分) 已知函數(shù),.

(1)求函數(shù)的值域;

(2)求滿足方程的值.

查看答案和解析>>

(本題滿分12分)  在九江市教研室組織的一次優(yōu)秀青年教師聯(lián)誼活動(dòng)中,有一個(gè)有獎(jiǎng)競(jìng)猜的環(huán)節(jié).主持人準(zhǔn)備了A、B兩個(gè)相互獨(dú)立的問(wèn)題,并且宣布:幸運(yùn)觀眾答對(duì)問(wèn)題A可獲獎(jiǎng)金1000元,答對(duì)問(wèn)題B可獲獎(jiǎng)金2000元,先答哪個(gè)題由觀眾自由選擇,但只有第一個(gè)問(wèn)題答對(duì),才能再答第二題,否則終止答題.若你被選為幸運(yùn)觀眾,且假設(shè)你答對(duì)問(wèn)題AB的概率分別為、

(1) 記先回答問(wèn)題A的獎(jiǎng)金為隨機(jī)變量, 則的取值分別是多少?

(2) 你覺(jué)得應(yīng)先回答哪個(gè)問(wèn)題才能使你獲得更多的獎(jiǎng)金?請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、填空題:

1. ,均有x 2+ x +1≥0  2.第一象限  3.充分而不必要條件  4. 0.01

5. 4   6. 2550   7.    8.①④  9.  R(S1+S2+S3+S4)

10. ,11.   12.1  13.  14.

二、解答題:

15.(Ⅰ)因?yàn)楦鹘M的頻率和等于1,故第四組的頻率:

     3′

直方圖如右所示        6′

(Ⅱ)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,頻率和為 所以,抽樣學(xué)生成績(jī)的合格率是%..       9 ′

利用組中值估算抽樣學(xué)生的平均分

=71

估計(jì)這次考試的平均分是71分                                            12′      

16.(1)證明:連結(jié)BD.

在長(zhǎng)方體中,對(duì)角線.

E、F為棱AD、AB的中點(diǎn),

 .

 .                           

B1D1平面平面,

  EF∥平面CB1D1.                       6′

(2) 在長(zhǎng)方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1

 AA1B1D1.

在正方形A1B1C1D1中,A1C1B1D1

 B1D1⊥平面CAA1C1.                 

B1D1平面CB1D1,

*平面CAA1C1⊥平面CB1D1.                    13′

17. (1)由                  4′

       由正弦定理得

             

                                       6′

                    8′

 (2)

     =                                  10′

 =                                          12′

  由(1)得

                            15′

18.(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,

∴a=1,b=c=,

故C的方程為:y2+=1                   5′

(2)由=λ,

∴λ+1=4,λ=3 或O點(diǎn)與P點(diǎn)重合=              7′

當(dāng)O點(diǎn)與P點(diǎn)重合=時(shí),m=0

當(dāng)λ=3時(shí),直線l與y軸相交,則斜率存在。

設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km2-4(k2+2)(m2-1)=4(k22m2+2)>0 (*)

x1+x2=, x1x2=                           11′

∵=3 ∴-x1=3x2

消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

 

整理得4k2m22m2-k2-2=0                          13′

m2=時(shí),上式不成立;m2≠時(shí),k2=,

因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易驗(yàn)證k2>2m2-2成立,所以(*)成立

即所求m的取值范圍為(-1,-)∪(,1)∪{0}                 16′

19. ⑴由題意得                  4′

(n≥2),

又∵

數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列。        8′

[則)]

⑵由

,                                   11′

          13′

 

                                               16′

20. (1)設(shè)

                ∴     ∴

           由

           又∵    ∴    

                               6′ 

           于是

;   由

           故函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)減區(qū)間為                              10′

(2)證明:據(jù)題意x1<x2<x3,

由(1)知f (x1)>f (x2)>f (x3),

          14′

即ㄓ是鈍角三角形.                                            18′

 

 

 

 

第Ⅱ部分  加試內(nèi)容

一.必答題:

1.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知                       4′

   (2)ξ可取1,2,3,4.

    ,

    ;    8′

    故ξ的分布列為

ξ

1

2

3

4

P

                                                             

   

答:ξ的數(shù)學(xué)期望為                                      10′

2.(1)由

求得                               3′

(2)猜想                                     5′

證明:①當(dāng)n=1時(shí),猜想成立。                            6′

②設(shè)當(dāng)n=k時(shí)時(shí),猜想成立,即,      7′

則當(dāng)n=k+1時(shí),有

所以當(dāng)n=k+1時(shí)猜想也成立                                9′

③綜合①②,猜想對(duì)任何都成立。                  10′

二、選答題:

3.(1)∵DE2=EF?EC,

          ∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.----5′

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

∵弦AD、BC相交于點(diǎn)E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.   10′

4.(矩陣與變換)

解:.

,                                                5′

橢圓的作用下的新曲線的方程為         10′

5.(1)直線的參數(shù)方程為,即.         5′

   (2)把直線代入,

,,
則點(diǎn)兩點(diǎn)的距離之積為.                   10′

6.

        7′

當(dāng)且僅當(dāng)  且

 F有最小值                                         10′

 

 


同步練習(xí)冊(cè)答案