∵AD.PA面PAD.∴. 查看更多

 

題目列表(包括答案和解析)

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD,E、F分別是線段PA、CD的中點(diǎn).
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α的正切;
(Ⅲ)求異面直線EF與BD所成的角β的余弦.

查看答案和解析>>

如圖,平面PAD⊥平面ABCD,四邊形ABCD為正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:EF⊥平面PAB;
(2)求異面直線EG與BD所成的角的余弦值.

查看答案和解析>>

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E、F分別是線段PA、CD的中點(diǎn).
(1)求證:PA⊥平面ABCD;
(2)求A點(diǎn)到平面BEF的距離.

查看答案和解析>>

如圖,平面PAD⊥平面ABCD,ABCD為正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:面EFG⊥面PAB;
(2)求異面直線EG與BD所成的角;
(3)求點(diǎn)A到面EFG的距離.

查看答案和解析>>

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E,F(xiàn),G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:PB∥平面EFG
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離為0.8,若存在,求出CQ的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案