19.解:(1)證明:如圖.∵ ABC―A1B1C1 是直三棱柱.∴ A1C1 =B1C1 =1.且∠A1C1B1 =90°. 又 D 是A1B1 的中點.∴ C1D ⊥A1B1 . 查看更多

 

題目列表(包括答案和解析)

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

如圖,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB.D、E分別為棱C1C、B1C1的中點.

(1)

求點B到平面A1C1CA的距離

(2)

求二面角B—A1D—A的大小

(3)

在線段AC上是否存在一點F,使得EF⊥平面A1BD?若存在,確定其位置并證明結(jié)論;若不存在,說明理由.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

如圖,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB.D、E分別為棱C1C、B1C1的中點.

(1)

求點B到平面A1C1CA的距離

(2)

求二面角B—A1D—A的大小

(3)

在線段AC上是否存在一點F,使得EF⊥平面A1BD?若存在,確定其位置并證明結(jié)論;若不存在,說明理由.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,點D是AB的中點,

(1)

求證:AC⊥BC1

(2)

求證:AC1//平面CDB1

查看答案和解析>>

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.

(Ⅰ)求證:點為棱的中點;

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,

易知,。由此知:從而有又點的中點,所以,所以點為棱的中點.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。

(1)過點點,取的中點,連。且相交于,面內(nèi)的直線,!3分

且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點的中點,所以,所以點為棱的中點.               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

如圖,三棱柱ABC-A1B1C1的底面是邊長為a的正三角形,側(cè)面ABB1A1是菱形且垂直于底面,∠A1AB=60°,M是A1B1的中點.

(1)求證:BMAC;

(2)求二面角B-B1C1-A1的正切值;

(3)求三棱錐M-A1CB的體積.

查看答案和解析>>


同步練習(xí)冊答案