題目列表(包括答案和解析)
在函數(shù)的圖象上有、、三點(diǎn),橫坐標(biāo)分別為其中.
⑴求的面積的表達(dá)式;
⑵求的值域.
【解析】由題意利用分割可先表示三角形ABC的面積,然后應(yīng)用對(duì)數(shù)運(yùn)算性質(zhì)及二次函數(shù)的性質(zhì)求解函數(shù)的最大值,屬于知識(shí)的簡(jiǎn)單綜合.
【解析】如圖:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣.
直線PQ為:y=(x+c),兩條漸近線為:y=x.由,得:Q(,);由,得:P(,).∴直線MN為:y-=﹣(x-),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=,解之得:,即e=.
【答案】B
解析:由直觀圖與原圖形中邊OB長(zhǎng)度不變,由S原圖形=2S直觀圖,有·OB·h=2××2·O′B′,∴h=4.
答案:D
如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求證:PD⊥BC;
(II)求二面角B—PD—C的正切值。
【解析】第一問(wèn)利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二問(wèn)中解:取PD的中點(diǎn)E,連接CE、BE,
為正三角形,
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,
∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。
下列敘述中,是離散型隨機(jī)變量的為( )
A.某人早晨在車站等出租車的時(shí)間
B.將一顆均勻硬幣擲十次,出現(xiàn)正面或反面的次數(shù)
C.連續(xù)不斷的射擊,首次命中目標(biāo)所需要的次數(shù)
D.袋中有2個(gè)黑球6個(gè)紅球,任取2個(gè),取得一個(gè)紅球的可能性 3.C.解析:由條件f(a)>0,f(b)>0僅知道二次函數(shù)圖象過(guò)x軸上方兩點(diǎn),據(jù)此畫(huà)圖會(huì)出現(xiàn)多種情況與x軸交點(diǎn)橫坐標(biāo)在(a,b)上可能有0個(gè)、1個(gè)或2個(gè),因此選C
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com