集合.若.則的取值范圍是 .分析:題目中的兩個集合可以看作是平面上的兩個區(qū)域.題目要解決的是這兩個區(qū)域有公共點的問題.可以借助于數(shù)形結合的方法去探究問題的答案. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

函數(shù)定義在區(qū)間[a, b]上,設“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設,

,

若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)

為區(qū)間上的“第k類壓縮函數(shù)”.

(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;

(Ⅱ) 若,函數(shù)上的“第3類壓縮函數(shù)”,求m的取值范圍.

 

查看答案和解析>>

(本小題滿分14分)

函數(shù)定義在區(qū)間[a, b]上,設“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設,

,

若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)

為區(qū)間上的“第k類壓縮函數(shù)”.

(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;

(Ⅱ) 若,函數(shù)上的“第3類壓縮函數(shù)”,求m的取值范圍.

ks**5u

查看答案和解析>>

(本小題滿分14分)

函數(shù)定義在區(qū)間[a, b]上,設“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設

,

若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)

為區(qū)間上的“第k類壓縮函數(shù)”.

(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;

(Ⅱ) 若,函數(shù)上的“第3類壓縮函數(shù)”,求m的取值范圍.

ks**5u

查看答案和解析>>

(本小題滿分14分)
函數(shù)定義在區(qū)間[a, b]上,設“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設,

若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)
為區(qū)間上的“第k類壓縮函數(shù)”.

(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;
(Ⅱ) 若,函數(shù)上的“第3類壓縮函數(shù)”,求m的取值范圍.

查看答案和解析>>


同步練習冊答案