題目列表(包括答案和解析)
如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對(duì)角線(xiàn)MN過(guò)C點(diǎn),|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最小?并求出最小面積.
(Ⅲ)若AN的長(zhǎng)度不少于6米,則當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力 第一問(wèn)要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長(zhǎng)的取值范圍是(2,8/3)或(8,+)
第二問(wèn),
當(dāng)且僅當(dāng)
(3)令
∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時(shí)y=取得最小值,即SAMPN取得最小值27(平方米).
函數(shù)有意義,需使,其定義域?yàn)?sub>,排除C,D,又因?yàn)?sub>,所以當(dāng)時(shí)函數(shù)為減函數(shù),故選A. w.w.w.k.s.5.u.c.o.m
答案:A.
【命題立意】:本題考查了函數(shù)的圖象以及函數(shù)的定義域、值域、單調(diào)性等性質(zhì).本題的難點(diǎn)在于給出的函數(shù)比較復(fù)雜,需要對(duì)其先變形,再在定義域內(nèi)對(duì)其進(jìn)行考察其余的性質(zhì).
(本題滿(mǎn)分12分)已知函數(shù).
(1)判斷f(x)的奇偶性,并說(shuō)明理由;
(2)若方程有解,求m的取值范圍;
【解析】第一問(wèn)利用函數(shù)的奇偶性的定義可以判定定義域和f(x)與f(-x)的關(guān)系從而得到結(jié)論。
第二問(wèn)中,利用方程有解,說(shuō)明了參數(shù)m落在函數(shù)y=f(x)的值域里面即可。
(本小題滿(mǎn)分12分)已知函數(shù)是定義在上的奇函數(shù),且,
(1)確定函數(shù)的解析式;
(2)用定義證明在上是增函數(shù);
(3)解不等式.
【解析】第一問(wèn)利用函數(shù)的奇函數(shù)性質(zhì)可知f(0)=0
結(jié)合條件,解得函數(shù)解析式
第二問(wèn)中,利用函數(shù)單調(diào)性的定義,作差變形,定號(hào),證明。
第三問(wèn)中,結(jié)合第二問(wèn)中的單調(diào)性,可知要是原式有意義的利用變量大,則函數(shù)值大的關(guān)系得到結(jié)論。
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線(xiàn)AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值
于是對(duì)一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線(xiàn),所以存在使即成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
1.D
2.C 提示:畫(huà)出滿(mǎn)足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿(mǎn)足,對(duì)照四個(gè)選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,N,因此,(),又A∩B=,故集合A、B的子集中沒(méi)有相同的集合,可知M、N中沒(méi)有其他的公共元素,故正確的答案是M∩N=.
5.A 提示:由得,當(dāng)時(shí),△,
得,當(dāng)時(shí),△,且,即
所以
6.A 7.D 8.A
9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.
10.A 11.B
12.D 提示:由,又因?yàn)?sub>是的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:
(1);
(2) ;綜合(1)、(2)可得。
二、填空題
13.3 14. w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com