114 解析:第一步:對于甲.乙三個地區(qū)中挑選2個有種方法,第二步:對于第三個地區(qū)有四種情況.第一是第三個地區(qū)放3人有1種可能,第二第三個地區(qū)放2人.另個一個地區(qū)放1人.則有6種可能第三是第三個地區(qū)放1人.另外一個地區(qū)放2人.則有6種可能,第四是第三個地區(qū)是放1人.然后另人二個地區(qū)也是1人有助6種可能,這樣第二步共有19種情況,因此共有114種情況. 查看更多

 

題目列表(包括答案和解析)

某市投資甲、乙兩個工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內(nèi),甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.

(Ⅰ)求數(shù)列,的通項(xiàng)公式;

(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個工廠被另一個工廠兼并.

【解析】本試題主要考查數(shù)列的通項(xiàng)公式的運(yùn)用。

第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二問,考查等差數(shù)列與等比數(shù)列的綜合,考查用數(shù)列解決實(shí)際問題,其步驟是建立數(shù)列模型,進(jìn)行計(jì)算得出結(jié)果,再反饋到實(shí)際中去解決問題.由于比較兩個工廠的產(chǎn)量時兩個函數(shù)的形式較特殊,不易求解,故采取了列舉法,數(shù)據(jù)列舉時作表格比較簡捷.

解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的產(chǎn)量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工廠將被乙工廠兼并

 

查看答案和解析>>

設(shè)f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一問中,

變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;

第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而

進(jìn)而得到結(jié)論。

(Ⅰ) 解:

。…………………………………3

變換的步驟是:

①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;…………………………………3

(Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2

(1)當(dāng)時,;…………2

(2)當(dāng)時;

 

查看答案和解析>>

在甲、乙兩個盒子中分別裝有標(biāo)號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個小球被取出的可能性相等。

(1)求取出的兩個球上標(biāo)號為相鄰整數(shù)的概率;

(2)求取出的兩個球上標(biāo)號之和能被3整除的概率.

【解析】本試題主要考查了古典概型概率的求解。第一問中,基本事件數(shù)為共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

總數(shù)為16種.其中取出的兩個小球上標(biāo)號為相鄰整數(shù)的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種利用古典概型可知,P=3 /8 ;

(2)其中取出的兩個小球上標(biāo)號之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5種可得概率值5 /16 ;

解:甲、乙兩個盒子里各取出1個小球計(jì)為(X,Y)則基本事件

共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

總數(shù)為16種.

(1)其中取出的兩個小球上標(biāo)號為相鄰整數(shù)的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種

故取出的兩個小球上標(biāo)號為相鄰整數(shù)的概率P=3 /8 ;

(2)其中取出的兩個小球上標(biāo)號之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5種

故取出的兩個小球上標(biāo)號之和能被3整除的概率為5 /16 ;

 

查看答案和解析>>

將字母a,a,b,b,c,c,排成三行兩列,要求每行的字母互不相同,每列的字母也互不相同,則不同的排列方法共有

(A)12種(B)18種(C)24種(D)36種

【解析】第一步先排第一列有,在排第二列,當(dāng)?shù)谝涣写_定時,第二列有兩種方法,如圖,所以共有種,選A.

 

查看答案和解析>>

某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏剑烧顿Y興建了甲、乙兩個企業(yè),1997年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的
23
.根據(jù)測算,該鄉(xiāng)從兩個企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.
(1)若以1997年為第一年,則該鄉(xiāng)從上述兩個企業(yè)獲得利潤最少的一年是那一年,該年還需要籌集多少萬元才能解決溫飽問題?
(2)試估算2005年底該鄉(xiāng)能否達(dá)到小康水平?為什么?

查看答案和解析>>


同步練習(xí)冊答案