對(duì)稱.動(dòng)點(diǎn)P(a.b)在不等式組表示的平面區(qū)域內(nèi)部及邊界上運(yùn)動(dòng).則的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

若直線與圓交于兩點(diǎn),且關(guān)于直線對(duì)稱,動(dòng)點(diǎn)P在不等式組表示的平面區(qū)域內(nèi)部及邊界上運(yùn)動(dòng),則的取值范圍是                   (    )

       A.   B.  C.     D.

查看答案和解析>>

如果直線與圓交于M,N兩點(diǎn),且M,N關(guān)于直線對(duì)稱,動(dòng)點(diǎn)P(a,b)在不等式組表示的平面區(qū)域內(nèi)部及邊界上運(yùn)動(dòng),則取值范圍是( )

A.          B.       C.         D.

 

查看答案和解析>>

如果直線與圓交于M,N兩點(diǎn),且M,N關(guān)于直線對(duì)稱,動(dòng)點(diǎn)P(a,b)在不等式組表示的平面區(qū)域內(nèi)部及邊界上運(yùn)動(dòng),則取值范圍是( )

A.B.C.D.

查看答案和解析>>

如果直線與圓交于M,N兩點(diǎn),且M,N關(guān)于直線對(duì)稱,動(dòng)點(diǎn)P(a,b)在不等式組表示的平面區(qū)域內(nèi)部及邊界上運(yùn)動(dòng),則取值范圍是( )
A.B.C.D.

查看答案和解析>>

若直線y=kx+1與圓x2+y2+kx+my-4=0交于M,N兩點(diǎn),且M,N關(guān)于直線x-y=0對(duì)稱,動(dòng)點(diǎn)P(a,b)在不等式組
kx-y+2≥0
kx-my≤0
y≥0
表示的平面區(qū)域內(nèi)部及邊界上運(yùn)動(dòng),則w=
b-2
a-1
的取值范圍是( 。
A、[2,+∞)
B、(-∞,-2]
C、[-2,2]
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

<tfoot id="eq2iw"></tfoot>
  • 2,4,6

    二、填空題(每小題4分,共4小題,滿分16分)

    13.     14.84      15.

    16.

    三、解答題

    17.解:(1)…………………………2分

    (2)由題意,令

    ∴從晚上1點(diǎn)至5點(diǎn),或上午13點(diǎn)至17點(diǎn),為所求時(shí)間,共8小時(shí),……12分

    18.解:由框圖可知

     

    (1)由題意可知,k=5時(shí),

    (3)由(2)可得:

    19.證明:(1)連結(jié)AC、BD、A1C1則AC、BD的交點(diǎn),O1

    ∴四邊形ACC1A1為平行四邊形,

    ∴四邊形A1O1CO為平行四邊形…………2分

    ∴A1O//CO1

    ∵A1O⊥平面ABCD

    ∴O1C⊥平面ABCD…………………………4分

    ∵O1C平面O1DC

    ∴存在點(diǎn)平面O1DC⊥平面ABCD……………5分

    (2)F為BC的三等分點(diǎn)B(靠近B)時(shí),有EF⊥BC……………………6分

    過(guò)點(diǎn)E作EH⊥AC于H,連FH、EF//A1O

    ∵平面A1AO⊥平面ABCD

    ∴EH⊥平面ABCD

    又BC平面ABCD   ∴BC⊥EH ①

    ∴HF//AB     ∴HF⊥BC, ②

    由①②知,BC⊥平面EFH

    ∵EF平面EFH    ∴EF⊥BC…………………………12分

    20.解:(1)當(dāng)0<x≤10時(shí),

    (2)①當(dāng)0<x≤10時(shí),

    ②當(dāng)x>10時(shí),

    (萬(wàn)元)

    (當(dāng)且僅當(dāng)時(shí)取等號(hào))……………………………………………………10分

    綜合①②知:當(dāng)x=9時(shí),y取最大值………………………………………………11分

    故當(dāng)年產(chǎn)量為9萬(wàn)件時(shí),服裝廠在這一品牌服裝的生產(chǎn)中獲年利潤(rùn)最大…………12分

    21.解:(1)

    又x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),則x1,x2的兩根,

    (2)由題意,

    22.解:(1)設(shè)橢圓方程為………………………………1分

    ………………………………………………3分

    ∴橢圓方程為…………………………………………………………4分

    (2)∵直線l平行于OM,且在y軸上的截距為m

    又KOM=

    ……………………………………………………5分

    ……………………………………6分

    ∵直線l與橢圓交于A、B兩個(gè)不同點(diǎn),

    (3)設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可…………9分

    設(shè)……………………10分

    ……………………………………………………10分

    故直線MA、MB與x軸始終圍成一個(gè)等腰三角形.……………………14分

     

     

     


    同步練習(xí)冊(cè)答案
    <li id="eq2iw"></li>