A.(1.3) B.(0.1) C. D. 2,4,6 查看更多

 

題目列表(包括答案和解析)

函數(shù)
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

過(0,1)作直線,使它與拋物線僅有一個公共點,這樣的直線有(  )條

A.1 B.2 C.3 D.4

查看答案和解析>>

以A(1,3)和B(-5,1)為端點的線段AB的中垂線方程是
[     ]
A.3x-y+8=0
B.3x+y+4=0
C.2x-y-6=0
D.3x+y+8=0

查看答案和解析>>

以A(1,3),B(-5,1)為端點的線段的垂直平分線的方程是
[     ]
A.3x-y+8=0
B.3x+y+4=0
C.3x+y+8=0
D.2x-y-6=0

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)
函數(shù)f(x)=x2-x-a2+a+1對于任一實數(shù)x,均有f(x)≥0.則實數(shù)a滿足的條件是
 

B.(幾何證明選做題)
如圖,圓O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
3
,AB=BC=4,則AC的長為
 

C.(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,曲線ρ=4cos(θ-
π
3
)
上任意兩點間的距離的最大值為
 

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.     14.84      15.

16.

三、解答題

17.解:(1)…………………………2分

(2)由題意,令

∴從晚上1點至5點,或上午13點至17點,為所求時間,共8小時,……12分

18.解:由框圖可知

 

(1)由題意可知,k=5時,

(3)由(2)可得:

19.證明:(1)連結(jié)AC、BD、A1C1則AC、BD的交點,O1

<td id="k4ss4"></td>

    ∴四邊形ACC1A1為平行四邊形,

    ∴四邊形A1O1CO為平行四邊形…………2分

    ∴A1O//CO1

    ∵A1O⊥平面ABCD

    ∴O1C⊥平面ABCD…………………………4分

    ∵O1C平面O1DC

    ∴存在點平面O1DC⊥平面ABCD……………5分

    (2)F為BC的三等分點B(靠近B)時,有EF⊥BC……………………6分

    過點E作EH⊥AC于H,連FH、EF//A1O

    ∵平面A1AO⊥平面ABCD

    ∴EH⊥平面ABCD

    又BC平面ABCD   ∴BC⊥EH ①

    ∴HF//AB     ∴HF⊥BC, ②

    由①②知,BC⊥平面EFH

    ∵EF平面EFH    ∴EF⊥BC…………………………12分

    20.解:(1)當(dāng)0<x≤10時,

    (2)①當(dāng)0<x≤10時,

    ②當(dāng)x>10時,

    (萬元)

    (當(dāng)且僅當(dāng)時取等號)……………………………………………………10分

    綜合①②知:當(dāng)x=9時,y取最大值………………………………………………11分

    故當(dāng)年產(chǎn)量為9萬件時,服裝廠在這一品牌服裝的生產(chǎn)中獲年利潤最大…………12分

    21.解:(1)

    又x1,x2是函數(shù)f(x)的兩個極值點,則x1,x2的兩根,

    (2)由題意,

    22.解:(1)設(shè)橢圓方程為………………………………1分

    ………………………………………………3分

    ∴橢圓方程為…………………………………………………………4分

    (2)∵直線l平行于OM,且在y軸上的截距為m

    又KOM=

    ……………………………………………………5分

    ……………………………………6分

    ∵直線l與橢圓交于A、B兩個不同點,

    (3)設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可…………9分

    設(shè)……………………10分

    ……………………………………………………10分

    故直線MA、MB與x軸始終圍成一個等腰三角形.……………………14分

     

     

     


    同步練習(xí)冊答案