16.(理)給出下列4個(gè)命題: 查看更多

 

題目列表(包括答案和解析)

給出下列四個(gè)命題:
①若△ABC三邊為a,b,c,面積為S,內(nèi)切圓的半徑r=
2S
a+b+c
,則由類比推理知四面體ABCD的內(nèi)切球半徑R=
3V
S1+S2+S3+S4
(其中,V為四面體的體積,S1,S2,S3,S4為四個(gè)面的面積);
②若回歸直線的斜率估計(jì)值是1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是
y
=1.23x+0.08
;
③若偶函數(shù)f(x)(x∈R)滿足f(x+2)=f(x),且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|有3個(gè)根.
④若圓C1x2+y2+2x=0,圓C2x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線.
其中,正確命題的序號(hào)是
①②④
①②④
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

給出下列四個(gè)命題:
①若△ABC三邊為a,b,c,面積為S,內(nèi)切圓的半徑,則由類比推理知四面體ABCD的內(nèi)切球半徑(其中,V為四面體的體積,S1,S2,S3,S4為四個(gè)面的面積);
②若回歸直線的斜率估計(jì)值是1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是;
③若偶函數(shù)f(x)(x∈R)滿足f(x+2)=f(x),且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|有3個(gè)根.
④若圓,圓,則這兩個(gè)圓恰有2條公切線.
其中,正確命題的序號(hào)是    .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

給出下列四個(gè)命題:
① 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045852289847.png" style="vertical-align:middle;" />,所以;
② 由兩邊同除,可得;
③ 數(shù)列1,4,7,10,…,的一個(gè)通項(xiàng)公式是
④ 演繹推理是由一般到特殊的推理,類比推理是由特殊到特殊的推理.
其中正確命題的個(gè)數(shù)有(     )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

給出下列四個(gè)命題:
①若△ABC三邊為a,b,c,面積為S,內(nèi)切圓的半徑數(shù)學(xué)公式,則由類比推理知四面體ABCD的內(nèi)切球半徑數(shù)學(xué)公式(其中,V為四面體的體積,S1,S2,S3,S4為四個(gè)面的面積);
②若回歸直線的斜率估計(jì)值是1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是數(shù)學(xué)公式;
③若偶函數(shù)f(x)(x∈R)滿足f(x+2)=f(x),且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|有3個(gè)根.
④若圓數(shù)學(xué)公式,圓數(shù)學(xué)公式,則這兩個(gè)圓恰有2條公切線.
其中,正確命題的序號(hào)是________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

給出下列四個(gè)命題:
①若△ABC三邊為a,b,c,面積為S,內(nèi)切圓的半徑,則由類比推理知四面體ABCD的內(nèi)切球半徑(其中,V為四面體的體積,為四個(gè)面的面積);
②若回歸直線的斜率估計(jì)值是1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是;
③若偶函數(shù)f(x)(x∈R)滿足f(x+2)=f(x),且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|有3個(gè)根;
④若圓C1:x2+y2+2x=0,圓C2:x2+y2+2y-1=0,則這兩個(gè)圓恰有2條公切線;
其中,正確命題的序號(hào)是(    )(把你認(rèn)為正確命題的序號(hào)都填上)。

查看答案和解析>>

一、選擇

1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 

10.B 11.(理)A。ㄎ模〤 12.B 

二、填空

13.(理)。ㄎ模25,60,15 14.-672 15.2.5小時(shí) 16.(理)①,④(文)(1),;(1),;(4),

三、解答題

  17.解析:設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,)因?yàn)?sub>,所以,由x的任意性得fx)的圖象關(guān)于直線x=1對稱,若m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,,,,,

,

  ∴ 當(dāng)時(shí),

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為;

  當(dāng)時(shí),為,或

  18.解析:(理)(1)設(shè)甲隊(duì)在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊(duì)獲勝,前四場比賽甲隊(duì)獲勝三場

  依題意得

 。2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

(文)①設(shè)甲袋中恰有兩個(gè)白球?yàn)槭录嗀

 

②設(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

甲袋中取2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

∴ 

  19.解析:(1)取中點(diǎn)E,連結(jié)ME、,

  ∴ ,MCEC. ∴ MC. ∴ ,M,C,N四點(diǎn)共面.

 。2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

  (3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

  20.解析:(1)

  ∵ x≥1. ∴ 

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

  (2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

  21.解析:(1)∵ 斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出,

  ∴ . ∴ (定值).

 。2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由D>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

  22.解析:(1)∵ a,,

  ∴   ∴   ∴ 

  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

 。2),,由可得

  . ∴ 

  ∴ b=5

 。3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ 

  當(dāng)n≥3時(shí),

  

     

  

  

  ∴ . 綜上得 

 

 


同步練習(xí)冊答案