6.已知?均為非零向量.條件 條件的夾角為銳角.則是成立的( )A.充要條件 B.充分而不必要的條件C.必要而不充分的條件 D.既不充分也不必要的條件 查看更多

 

題目列表(包括答案和解析)

已知均為非零向量,條件p:,條件q:的夾角為銳角,則p是q成立的( )
A.充要條件
B.充分而不必要的條件
C.必要而不充分的條件
D.既不充分也不必要的條件

查看答案和解析>>

(08年黃岡中學二模文)已知均為非零向量,條件   條件的夾角為銳角,則成立的

A.充要條件                                     B.充分而不必要的條件

C.必要而不充分的條件                   D.既不充分也不必要的條件

查看答案和解析>>

已知
a
、
b
均為非零向量,命題p:
a
b
>0,命題q:
a
b
的夾角為銳角,則p是q成立的( 。
A、必要不充分條件
B、充分不必要條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

已知
a
b
均為非零向量,條件p:
a
b
>0
,條件q:
a
b
的夾角為銳角,則p是q成立的( 。

查看答案和解析>>

已知均為非零向量,命題p:>0,命題q:的夾角為銳角,則p是q成立的    (      )

A.必要不充分條件                       B.充分不必要條件

C.充分必要條件                        D.既不充分也不必要條件

 

查看答案和解析>>

1

2

3

4

5

6

7

8

9

10

11

12

D

B

B

B

C

C

B

B

B

C

C

C

13         400               14       

15          4                16      

17(本小題滿分12分)解:(1)由已知得

    …………………….6分

(2)

  ………………………….……….12分

18. (本小題滿分12分)解:記“甲從第一小組的10張票中任抽1張,抽到足球票”為事件A,“乙從第二小組的10張票中任抽1張,抽到足球票”為事件B;記“甲從第一小組的10張票中任抽1張,抽到排球票”為事件,“乙從張二小組的10張票中任抽1張,抽到排球票”為事件,于是

                              ……………………………………2分

由于甲(或乙)是否抽到足球票,對乙(或甲)是否抽到足球票沒有影響,因此A與B是相互獨立事件!4分

(1)甲、乙兩人都抽到足球票就是事件A、B同時發(fā)生,根據(jù)相互獨立事件的乘法概率公式,得到 ………………………7分

因此,兩人都抽到足球票的概率是     ………………………8分

(2)甲、乙兩人均未抽到足球票(事件同時發(fā)生)的概率為

     ………………………9分

所以,兩人中至少有1人抽到足球票的概率為

    

因此,兩人中至少有1人抽到足球票的概率是   ………………………12分

19.(本小題滿分12分)

   (1)證明:取AB中點H,連結GH,HE,

∵E,F(xiàn),G分別是線段PA、PD、CD的中點,

∴GH∥AD∥EF,

∴E,F(xiàn),G,H四點共面. ……………………1分

又H為AB中點,

∴EH∥PB. ……………………………………2分

又EH面EFG,PB平面EFG,

∴PB∥平面EFG. ………………………………4分

   (2)解:取BC的中點M,連結GM、AM、EM,則GM//BD,

所成的角.………………5分

     在Rt△MAE中, ,

     同理,…………………………6分

,

∴在△MGE中,

………………7分

故異面直線EG與BD所成的角為arccos,………………………………8分

  解法二:建立如圖所示的空間直角坐標系A-xyz,

則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

       (1)證明:

         …………………………1分

        設

        即,

       

         ……………3分

        ,

        ∴PB∥平面EFG. …………………………………………………………………… 4分

       (2)解:∵,…………………………………………5分

        ,……………………… 7分

    故異面直線EG與BD所成的角為arccos,………………………………8分

    (3)   

      ,            

    設面的法向量

    取法向量

    A到平面EFG的距離=.…………………………12分

    20. (本小題滿分12分)解:(1)因為

       所以,

       而,因此,所以,即數(shù)列是首項和公比都為2的等比數(shù)列。  ………………………6分

    (3)    由(1)知

    所以數(shù)列的通項公式為.………8分

          =

          =    ………………………12分

    21. (本小題滿分12分)解:(1)

    時,由得,同,由得,,則函數(shù)的單調遞增區(qū)間為,單調遞增區(qū)間為. ………3分列表如下:

    0

    +

    0

    -

    0

    所以,當時,函數(shù)的極大值為0,極小值為。 ………………6分

    (2)

    在區(qū)間上單調遞減,

    ;

    .               ………………9分

    恒成立,

     解得,故的取值范圍是………………12分

     

    22.(本小題滿分14分)

       (1)解法一:設,             …………1分

    ;                     …………3分

                                                  …………4分

    化簡得不合

    故點M的軌跡C的方程是                                                   …………5分

       (1)解法二:的距離小于1,

    ∴點M在直線l的上方,

    點M到F(1,0)的距離與它到直線的距離相等              …………3分

    所以曲線C的方程為                                                           …………5分

       (2)當直線m的斜率不存在時,它與曲線C只有一個交點,不合題意,

    設直線m的方程為,

    代入 (☆)                                 …………6分

    與曲線C恒有兩個不同的交點

    設交點A,B的坐標分別為,

                                                            …………7分

    ①由,

             …………9分

    點O到直線m的距離,

    ………10分

    (舍去)

                                                                                    …………12分

    方程(☆)的解為

                            …………13分

    方程(☆)的解為

               

        所以,           …………14分

     

     

     


    同步練習冊答案