如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,
BD=CD=AB.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.
請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,則BC=
;
(2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點D,垂足為E,當BD=5cm,∠B=30°時,△ACD的周長=
15cm
15cm
.
(3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點,DE⊥AB,垂足為E,那么BE:EA=
3:1
3:1
.
(4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點,且∠CAD=∠ABE,AD、BE交于點P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關(guān)系,并說明理由.