73.在利用圓錐曲線統(tǒng)一定義解題時(shí).你是否注意到定義中的定比的分子分母的順序? 查看更多

 

題目列表(包括答案和解析)

在使用圓錐曲線的參數(shù)方程解題時(shí),需要能夠正確地把普通方程轉(zhuǎn)化為參數(shù)方程.那么,在把普通方程轉(zhuǎn)化為參數(shù)方程時(shí),是否會(huì)出現(xiàn)不同的結(jié)果呢?

查看答案和解析>>

設(shè)F(1,0),點(diǎn)M在x軸上,點(diǎn)P在y軸上,且

(1)當(dāng)點(diǎn)P在y軸上運(yùn)動(dòng)時(shí),求點(diǎn)N的軌跡C的方程;

(2)設(shè)是曲線C上的點(diǎn),且成等差數(shù)列,當(dāng)AD的垂直平分線與x軸交于點(diǎn)E(3,0)時(shí),求點(diǎn)B的坐標(biāo)。

【解析】本試題主要是對于圓錐曲線的綜合考查。首先求解軌跡方程,利用向量作為工具表示向量的坐標(biāo),進(jìn)而達(dá)到關(guān)系式的求解。第二問中利用數(shù)列的知識和直線方程求解點(diǎn)的坐標(biāo)。

 

查看答案和解析>>

在圓錐曲線的學(xué)習(xí)中,我們已經(jīng)學(xué)習(xí)了它的標(biāo)準(zhǔn)方程,以橢圓=1(a>b>0)為例說明此方程就是以F1(-c,0),F(xiàn)2(c,0)為焦點(diǎn),長軸長為2a的橢圓的方程.怎樣利用曲線與方程的定義說明上述問題?

查看答案和解析>>

在利用隨機(jī)模擬求圖(其中矩形OABC的長為π,寬為2)中陰影(由曲線y=sinx(0≤x≤π)與x軸圍成)面積的過程中,隨機(jī)產(chǎn)生N1組隨機(jī)數(shù)據(jù)(xi,yi),(i=1,2,3∧N1),其對應(yīng)的點(diǎn)都落在矩形OABC區(qū)域內(nèi),其中有N2個(gè)點(diǎn)落在陰影區(qū)域內(nèi),現(xiàn)已知N1=10,據(jù)此估計(jì)N2的值為( 。┱f明:[x]表示實(shí)數(shù)x的整數(shù)部分.

查看答案和解析>>

(2009•奉賢區(qū)二模)已知:點(diǎn)P與點(diǎn)F(2,0)的距離比它到直線x+4=0的距離小2,若記點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程.
(2)若直線L與曲線C相交于A、B兩點(diǎn),且OA⊥OB.求證:直線L過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
(3)試?yán)盟鶎W(xué)圓錐曲線知識參照(2)設(shè)計(jì)一個(gè)與直線L過定點(diǎn)有關(guān)的數(shù)學(xué)問題,并解答所提問題.

查看答案和解析>>


同步練習(xí)冊答案