④應按平移.所以不正確. 查看更多

 

題目列表(包括答案和解析)

(2005•上海模擬)(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個內(nèi)角為arccos
7
9
,周長為定值p,求面積S的最大值;
(3)為了研究邊長a、b、c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,則應使sinC最大,即使∠C最大,也就是使∠C所對的邊c邊長最大,所以,當a?9,b?8,c?4時該三角形面積最大,此時cosC=
43
48
,sinC=
455
48
,所以,該三角形面積的最大值是
3
455
4
.以上解答是否正確?若不正確,請你給出正確的解答.

查看答案和解析>>

現(xiàn)在人們經(jīng)常使用電腦,若坐姿不正確,易造成眼睛疲勞,腰酸頸痛.一般正確的坐姿是:眼睛望向顯示器屏幕時,應成20°的俯角α(即望向屏幕上邊緣的水平視線與望向屏幕中心的視線的夾角);而小臂平放,肘部形成100°的鈍角β.張燕家剛買的電腦顯示器屏幕的高度為24.5cm,屏幕的上邊緣到顯示器支座底部的距離為36cm.已知張燕同學眼部到肩部的垂直距離為20cm,大臂長(肩部到肘部的距離)DE=28cm,張燕同學坐姿正確時肩部到臀部的距離是DM=53cm,請你幫張燕同學計算一下:

(1)她要按正確坐姿坐在電腦前,眼與顯示器屏幕的距離應是多少?(精確到0.1cm)

(2)她要訂做一套適合自己的電腦桌椅,桌、椅及鍵盤三者之間的高度應如何搭配?(精確到0.1cm)

 

查看答案和解析>>

(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個內(nèi)角為arccos
7
9
,周長為定值p,求面積S的最大值;
(3)為了研究邊長a、b、c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,則應使sinC最大,即使∠C最大,也就是使∠C所對的邊c邊長最大,所以,當a?9,b?8,c?4時該三角形面積最大,此時cosC=
43
48
,sinC=
455
48
,所以,該三角形面積的最大值是
3
455
4
.以上解答是否正確?若不正確,請你給出正確的解答.

查看答案和解析>>

(1)若直角三角形兩直角邊長之和為12,求其周長p的最小值;
(2)若三角形有一個內(nèi)角為,周長為定值p,求面積S的最大值;
(3)為了研究邊長a、b、c滿足9≥a≥8≥b≥4≥c≥3的三角形其面積是否存在最大值,現(xiàn)有解法如下:,要使S的值最大,則應使sinC最大,即使∠C最大,也就是使∠C所對的邊c邊長最大,所以,當a?9,b?8,c?4時該三角形面積最大,此時,所以,該三角形面積的最大值是.以上解答是否正確?若不正確,請你給出正確的解答.

查看答案和解析>>

(2010•福建模擬)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學用概率論方法證明等式(*)如下:
設一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n
,
所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
對此,有的同學認為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學對上述證明方法的科學性與嚴謹性提出質(zhì)疑.現(xiàn)有以下四個判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號
①③
①③

查看答案和解析>>


同步練習冊答案