本節(jié)內(nèi)容對于立體幾何的應用.讀者需自行復習.這里不再贅述. 查看更多

 

題目列表(包括答案和解析)

函數(shù)概念的發(fā)展歷程

  17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經(jīng)度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關(guān)系,并根據(jù)這種關(guān)系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達到的高度和射程.這正是函數(shù)產(chǎn)生和發(fā)展的背景.

  “function”一詞最初由德國數(shù)學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數(shù)”.

  萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數(shù)學家約翰·伯努利(J.Bernoulli,1667~1748)強調(diào)函數(shù)要用公式表示.后來,數(shù)學家認為這不是判斷函數(shù)的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.

  當時很多數(shù)學家對于不用公式表示函數(shù)很不習慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀末19世紀初,人們對函數(shù)的認識向前推進了.德國數(shù)學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數(shù)”.這個定義較清楚地說明了函數(shù)的內(nèi)涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進而用更加嚴謹?shù)募虾蛯Z言表述,這就是本節(jié)學習的函數(shù)概念.

  綜上所述可知,函數(shù)概念的發(fā)展與生產(chǎn)、生活以及科學技術(shù)的實際需要緊密相關(guān),而且隨著研究的深入,函數(shù)概念不斷得到嚴謹化、精確化的表達,這與我們學習函數(shù)的過程是一樣的.

你能以函數(shù)概念的發(fā)展為背景,談談從初中到高中學習函數(shù)概念的體會嗎?

1.探尋科學家發(fā)現(xiàn)問題的過程,對指導我們的學習有什么現(xiàn)實意義?

2.萊布尼茲、狄利克雷等科學家有哪些品質(zhì)值得我們學習?

查看答案和解析>>

在本節(jié)我們學過的常見幾何體中,如果用一個平面去截此幾何體,則截面是三角形,那么這個幾何體可能是__________.

查看答案和解析>>

在本節(jié)我們學過的常見幾何體中,如果用一個平面去截幾何體,如果截面是三角形,那么這個幾何體可能是____________.

查看答案和解析>>

根據(jù)本節(jié)所學知識,怎樣用兩根細繩檢查一張課桌的四條腿的下端是否在同一個平面內(nèi)?

查看答案和解析>>

從特殊到一般和從一般到特殊,這是人們正確認識客觀事物的認識規(guī)律,也是處理數(shù)學問題的重要思想方法.從這一思想出發(fā),我們知道兩角和的正弦為:sin(α+β)=sinαcosβ+cosαsinβ,那么現(xiàn)在我們令α=β,在這種特殊情況下我們可以得到公式sin2α=2sinαcosα,同理其余幾種三角函數(shù)也可以做類似的推理,本節(jié)我們就來研究一下有關(guān)倍角的公式.你能利用上述知識解決下面的問題嗎?

已知sinα=,α∈(,π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>


同步練習冊答案