1.一個(gè)等腰三角形的一個(gè)內(nèi)角比另一個(gè)內(nèi)角的2倍少.求這個(gè)三角形的三個(gè)內(nèi)角的度數(shù). 查看更多

 

題目列表(包括答案和解析)

25、一個(gè)等腰三角形的一個(gè)內(nèi)角比另一個(gè)內(nèi)角的2倍少30°,求這個(gè)三角形的三個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

一個(gè)等腰三角形的一個(gè)內(nèi)角比另一個(gè)內(nèi)角的2倍少30°,求這個(gè)三角形的三個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

有如圖所示的五種塑料薄板(厚度不計(jì)):①兩直角邊分別為3、4的直角三角形ABC;
②腰長(zhǎng)為4、頂角為36°的等腰三角形JKL;
③腰長(zhǎng)為5、頂角為120°的等腰三角形OMN;
④兩對(duì)角線和一邊長(zhǎng)都是4且另三邊長(zhǎng)相等的凸四邊形PQRS;
⑤長(zhǎng)為4且寬(小于長(zhǎng))與長(zhǎng)的比是黃金分割比的黃金矩形WXYZ.
它們都不能折疊,現(xiàn)在將它們一一穿過一個(gè)內(nèi)、外徑分別為2.4、2.7的鐵圓環(huán).
我們規(guī)定:如果塑料板能穿過鐵環(huán)內(nèi)圈,則稱為此板“可操作”;否則,便稱為“不可操作”.
(1)證明:第④種塑料板“可操作”;求:從這五種塑料板中任意取兩種至少有一種“不可操作”的概率.
精英家教網(wǎng)

查看答案和解析>>

有如圖所示的五種塑料薄板(厚度不計(jì)):①兩直角邊分別為3、4的直角三角形ABC;
②腰長(zhǎng)為4、頂角為36°的等腰三角形JKL;
③腰長(zhǎng)為5、頂角為120°的等腰三角形OMN;
④兩對(duì)角線和一邊長(zhǎng)都是4且另三邊長(zhǎng)相等的凸四邊形PQRS;
⑤長(zhǎng)為4且寬(小于長(zhǎng))與長(zhǎng)的比是黃金分割比的黃金矩形WXYZ.
它們都不能折疊,現(xiàn)在將它們一一穿過一個(gè)內(nèi)、外徑分別為2.4、2.7的鐵圓環(huán).
我們規(guī)定:如果塑料板能穿過鐵環(huán)內(nèi)圈,則稱為此板“可操作”;否則,便稱為“不可操作”.
(1)證明:第④種塑料板“可操作”;求:從這五種塑料板中任意取兩種至少有一種“不可操作”的概率.

查看答案和解析>>

有如圖所示的五種塑料薄板(厚度不計(jì)):①兩直角邊分別為3、4的直角三角形ABC;
②腰長(zhǎng)為4、頂角為36°的等腰三角形JKL;
③腰長(zhǎng)為5、頂角為120°的等腰三角形OMN;
④兩對(duì)角線和一邊長(zhǎng)都是4且另三邊長(zhǎng)相等的凸四邊形PQRS;
⑤長(zhǎng)為4且寬(小于長(zhǎng))與長(zhǎng)的比是黃金分割比的黃金矩形WXYZ.
它們都不能折疊,現(xiàn)在將它們一一穿過一個(gè)內(nèi)、外徑分別為2.4、2.7的鐵圓環(huán).
我們規(guī)定:如果塑料板能穿過鐵環(huán)內(nèi)圈,則稱為此板“可操作”;否則,便稱為“不可操作”.
(1)證明:第④種塑料板“可操作”;求:從這五種塑料板中任意取兩種至少有一種“不可操作”的概率.

查看答案和解析>>


同步練習(xí)冊(cè)答案