4.有關數列的應用問題也一直備受關注. 預測2007年高考對本將的考察為: 查看更多

 

題目列表(包括答案和解析)

下面是有關數列的表述:①數列是特殊的函數;②數列若用圖像表示,它是一群孤立的點;③數列{2n3}的第k項是2k3.其中正確表述的序號是________

查看答案和解析>>

有關數列的表述:

①數列的項數是無限的  ②通項公式是給出數列的一種方式  ③數列用圖象來表示是一群孤立的點

其中,正確的表述有

A.0個                                                             B.1個

C.2個                                                             D.3個

查看答案和解析>>

線性規(guī)劃的應用問題常用________去解,分析題目的已知條件,找出________和________是關鍵.

查看答案和解析>>

動物中的數學“天才”

  蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成.組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料.蜂房的巢壁厚0.073毫米,誤差極。

  丹頂鶴總是成群結隊遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計算還表明“人”字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?

  蜘蛛結的“八卦”形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規(guī)也很難畫出像蜘蛛網那樣勻稱的圖案.

  冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發(fā)的熱量也最少.

  真正的數學“天才”是珊瑚蟲.珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條.奇怪的是,古生物學家發(fā)現3億5千萬年前的珊瑚蟲每年“畫”出400幅“水彩畫”.天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天.

1.同學們,大自然中有許多有關數學的奧妙,許多現象有意無意地應用著數學,對于這些現象你有什么看法嗎?請你談談你對大自然中的數學現象的認識.

2.把你發(fā)現的大自然中的數學問題告訴你的同學和老師,讓他們也分享一下你認識大自然的樂趣.

查看答案和解析>>

(2007•上海)求出一個數學問題的正確結論后,將其作為條件之一,提出與原來問題有關的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側棱長為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
16
3
,求側棱長”;也可以是“若正四棱錐的體積為
16
3
,求所有側面面積之和的最小值”.
試給出問題“在平面直角坐標系xoy中,求點P(2,1)到直線3x+4y=0的距離.”的一個有意義的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>


同步練習冊答案