含參數(shù)問題的分類討論是常見題型. 查看更多

 

題目列表(包括答案和解析)

平面內(nèi)與兩定點連線的斜率之積等于非零常數(shù)的點的軌跡,加上兩點所成的曲線可以是圓、橢圓或雙曲線。求曲線的方程,并討論的形狀與值的關系。

【解析】本試題主要考查了平面中動點的軌跡方程,利用斜率之積為定值可以對參數(shù)進行分類討論,并得到關于不同曲線的參數(shù)的范圍問題。對于方程的特點做了很好的考查和運用。

 

查看答案和解析>>

平面內(nèi)與兩定點連線的斜率之積等于非零常數(shù)的點的軌跡,加上兩點所成的曲線可以是圓、橢圓或雙曲線。求曲線的方程,并討論的形狀與值的關系。

【解析】本試題主要考查了平面中動點的軌跡方程,利用斜率之積為定值可以對參數(shù)進行分類討論,并得到關于不同曲線的參數(shù)的范圍問題。對于方程的特點做了很好的考查和運用。

 

查看答案和解析>>

三個同學對問題“關于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求實數(shù)a的取值范圍”提出各自的解題思路.
甲說:“只須不等式左邊的最小值不小于右邊的最大值”.
乙說:“把不等式變形為左邊含變量x的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說:“把不等式兩邊看成關于x的函數(shù),作出函數(shù)圖象”.
參考上述解題思路,你認為他們所討論的問題的正確結論,即a的取值范圍是
 

查看答案和解析>>

三個同學對問題“關于的不等式+25+|-5|≥在[1,12]上恒成立,求實數(shù)的取值范圍”提出各自的解題思路.

甲說:“只須不等式左邊的最小值不小于右邊的最大值”.

乙說:“把不等式變形為左邊含變量的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.

丙說:“把不等式兩邊看成關于的函數(shù),作出函數(shù)圖像”.

參考上述解題思路,你認為他們所討論的問題的正確結論,即的取值范圍是          .

查看答案和解析>>

三個同學對問題“關于的不等式+25+|-5|≥在[1,12]上恒成

立,求實數(shù)的取值范圍”提出各自的解題思路.

甲說:“只須不等式左邊的最小值不小于右邊的最大值”.

乙說:“把不等式變形為左邊含變量的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.

丙說:“把不等式兩邊看成關于的函數(shù),作出函數(shù)圖像”.

參考上述解題思路,你認為他們所討論的問題的正確結論,即的取值范圍是       .

 

查看答案和解析>>


同步練習冊答案