題目列表(包括答案和解析)
已知直線y=k(x-3)與雙曲線,有如下信息:聯(lián)立方程組消去y后得到方程Ax2+Bx+C=0,分類討論:
(1)當A=0時,該方程恒有一解;
(2)當A≠0時,Δ=B2-4AC≥0恒成立.在滿足所提供信息的前提下,雙曲線離心率的取值范圍是
[9,+∞)
(1,9]
(1,2]
[2,+∞)
x2 |
m |
y2 |
27 |
|
A、[9,+∞) |
B、(1,9] |
C、(1,2] |
D、[2,+∞) |
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調(diào)遞減;當時單調(diào)遞增,故當時,取最小值
于是對一切恒成立,當且僅當. ①
令則
當時,單調(diào)遞增;當時,單調(diào)遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.
已知函數(shù)其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(III)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,函數(shù)的最值等基礎知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com