空間向量基本定理 如果三個向量a.b.c不共面.那么對空間任一向量p.存在一個唯一的有序?qū)崝?shù)組x.y.z.使p=xa+yb+zc. 推論 設(shè)O.A.B.C是不共面的四點.則對空間任一點P.都存在唯一的三個有序?qū)崝?shù)x.y.z.使. 查看更多

 

題目列表(包括答案和解析)

由空間向量基本定理可知,空間任意向量
p
可由三個不共面的向量
a
,
b
,
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底
a
,
b
c
下的廣義坐標.特別地,當
a
,
b
,
c
為單位正交基底時,(x,y,z)為直角坐標.設(shè)
i
,
j
,
k
分別為直角坐標中x,y,z正方向上的單位向量,則空間直角坐標(1,2,3)在基底
i
+
j
,
i
-
j
,
k
下的廣義坐標為
3
2
,-
1
2
,3
3
2
,-
1
2
,3

查看答案和解析>>

由空間向量基本定理可知,空間任意向量可由三個不共面的向量唯一確定地表示為,則稱(x,y,z)為基底下的廣義坐標.特別地,當為單位正交基底時,(x,y,z)為直角坐標.設(shè)分別為直角坐標中x,y,z正方向上的單位向量,則空間直角坐標(1,2,3)在基底下的廣義坐標為   

查看答案和解析>>

由空間向量基本定理可知,空間任意向量可由三個不共面的向量唯一確定地表示為,則稱(x,y,z)為基底下的廣義坐標.特別地,當為單位正交基底時,(x,y,z)為直角坐標.設(shè)分別為直角坐標中x,y,z正方向上的單位向量,則空間直角坐標(1,2,3)在基底下的廣義坐標為   

查看答案和解析>>

由空間向量基本定理可知,空間任意向量
p
可由三個不共面的向量
a
,
b
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底
a
,
b
,
c
下的廣義坐標.特別地,當
a
,
b
,
c
為單位正交基底時,(x,y,z)為直角坐標.設(shè)
i
,
j
,
k
分別為直角坐標中x,y,z正方向上的單位向量,則空間直角坐標(1,2,3)在基底
i
+
j
i
-
j
,
k
下的廣義坐標為______.

查看答案和解析>>

類比平面向量基本定理:“如果e1e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)任意向量a,有且只有一對實數(shù)λ1,λ2,使得a=λ1e1+λ2e2”,寫出空間向量基本定理是:________.

查看答案和解析>>


同步練習(xí)冊答案