110.證明直線與平面的平行的思考途徑 (1)轉(zhuǎn)化為直線與平面無(wú)公共點(diǎn), (2)轉(zhuǎn)化為線線平行, (3)轉(zhuǎn)化為面面平行. 查看更多

 

題目列表(包括答案和解析)

已知(如圖)在正三棱柱(底面正三角形,側(cè)棱垂直于底面)ABC-A1B1C1中,若AB=AA1=4,點(diǎn)D是AA1的中點(diǎn),點(diǎn)P是BC1中點(diǎn)
(1)證明DP與平面ABC平行.
(2)是否存在平面ABC上經(jīng)過(guò)C點(diǎn)的直線與DB垂直,如果存在請(qǐng)證明;若不存在,請(qǐng)說(shuō)明理由.
(3)求四棱錐C1-A1B1BD的體積.

查看答案和解析>>

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,且側(cè)棱垂直于底面,由B沿棱柱側(cè)面經(jīng)過(guò)棱C C1到點(diǎn)A1的最短路線長(zhǎng)為2
5
,設(shè)這條最短路線與CC1的交點(diǎn)為D.
(1)求三棱柱ABC-A1B1C1的體積;
(2)在平面A1BD內(nèi)是否存在過(guò)點(diǎn)D的直線與平面ABC平行?證明你的判斷;
(3)證明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

如圖,已知三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,且側(cè)棱垂直于底面,由

B沿棱柱側(cè)面經(jīng)過(guò)棱C C1到點(diǎn)A1的最短路線長(zhǎng)為,設(shè)這條最短路線與CC1的交

點(diǎn)為D.

(1)求三棱柱ABC-A1B1C1的體積;

(2)在平面A1BD內(nèi)是否存在過(guò)點(diǎn)D的直線與平面ABC平行?證明你的判斷;

(3)證明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

如圖四棱錐中,底面是平行四邊形,平面的中點(diǎn),.

1)試判斷直線與平面的位置關(guān)系,并予以證明;

2)若四棱錐體積為 ,求證:平面.

 

查看答案和解析>>

()本小題滿分13分

如圖,ABCD的邊長(zhǎng)為2的正方形,直線與平面ABCD平行,E和F式上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

查看答案和解析>>


同步練習(xí)冊(cè)答案