20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空題:本大題共4小題,每小題4分,共16分。把答案填在題中橫線上。

13.13     14.       15.2           16.1005

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

解(I)

      

  (Ⅱ)由,

        

18.(本小題滿分12分)

解(I)記事件A;射手甲剩下3顆子彈,

      

(Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

(Ⅲ)的取值分別為16,17,18,19,20,

     

19.(本題滿分12分)

證(Ⅰ)因?yàn)?sub>側(cè)面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

從而  且

 不妨設(shè)  ,則,則

  則

中有   從而(舍負(fù))

的中點(diǎn)時,

 法二:以為原點(diǎn)軸,設(shè),則       由得    即

      

      化簡整理得       或

     當(dāng)重合不滿足題意

     當(dāng)的中點(diǎn)

     故的中點(diǎn)使

 (Ⅲ)取的中點(diǎn),的中點(diǎn),的中點(diǎn),的中點(diǎn)

 連,連,連

 連,且為矩形,

   故為所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小為向量的夾角

因?yàn)?sub>  

 

20.(本小題滿分12分)

(1)由

        切線的斜率切點(diǎn)坐標(biāo)(2,5+

        所求切線方程為

   (2)若函數(shù)為上單調(diào)增函數(shù),

        則上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述問題等價于

        而為在上的減函數(shù),

        則于是為所求

21.(本小題滿分12分)

解:(1)

        ∵直線l:x-y+2=0與圓x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴橢圓C1的方程是

(2)∵M(jìn)P=MF,∴動點(diǎn)M到定直線l1:x=-1的距離等于它的定點(diǎn)F2(1,0)的距離,

∴動點(diǎn)M的軌跡是以l1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為。

(3)Q(0,0),設(shè)

,

得  ,

,化簡得

當(dāng)且僅當(dāng)時等號成立,

,又∵y­22≥64,

∴當(dāng).    故的取值范圍是.

22.(本小題滿分14分)

解(I)由題意,令

      

 (Ⅱ)

      

  (1)當(dāng)時,成立:

  (2)假設(shè)當(dāng)時命題成立,即

       當(dāng)時,

      

 

 

 


同步練習(xí)冊答案