2.求二面角大小時.關鍵是找二面角的平面角.可充分利用定義法或垂面法等. 查看更多

 

題目列表(包括答案和解析)

已知△ABC和△DBC是兩個有公共斜邊的直角三角形,并且AB=AD=AC=2a,CD=
6
a

(1)若P是AC邊上的一點,當△PDB的面積最小時,求二面角B-PD-C的正切值;
(2)在(1)的條件下,求點C到平面PBD的距離;
(3)能否找到一個球,使A,B,C,D都在該球面上,若不能,請說明理由;若能,求該球的內接正三棱柱的側面積的最大值.

查看答案和解析>>

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,D、E、F分別是棱PA、PB、PC的中點,連接DE,DF,EF.
(1)求證:平面DEF∥平面ABC;
(2)若PA=BC=2,當三棱錐P-ABC的體積的最大值時,求二面角A-EF-D的平面角的余弦值.

查看答案和解析>>

在Rt△ABC中,AC=4,BC=3,∠C=90°,D,E分別為AC,AB邊上的點,且DE∥BC,沿DE將△ADE折起(記為△A1DE),使二面角A1-DE-B為直二面角.
(1)當E點在何處時,A1B的長度最小,并求出最小值;
(2)當A1B的長度最小時,求二面角A1-BE-C的大小.

查看答案和解析>>

精英家教網(wǎng)如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,動點D在線段AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當點D運動到線段AB的中點時,求二面角D-CO-B的大;
(Ⅲ)當CD與平面AOB所成角最大時,求三棱錐C-OBD的體積.

查看答案和解析>>

精英家教網(wǎng)精英家教網(wǎng)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE=x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當x=2時,求證:BD⊥EG;
(2)若以F、B、C、D為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
(3)當f(x)取得最大值時,求二面角D-BF-C的余弦值.

查看答案和解析>>


同步練習冊答案