對于集合.一定要抓住集合的代表元素.及元素的“確定性.互異性.無序性 . 中元素各表示什么? 注重借助于數(shù)軸和文氏圖解集合問題. 空集是一切集合的子集.是一切非空集合的真子集. 查看更多

 

題目列表(包括答案和解析)

(2012•浦東新區(qū)三模)已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),ai+aj與aj-ai至少一個屬于A,
(1)分別判斷集合M={0,2,4}與N=(1,2,3)是否具有性質(zhì)P,并說明理由;
(2)①求證:0∈A;②當n=3時,集合A中元素a1、a2、a3是否一定成等差數(shù)列,若是,請證明;若不是,請說明理由;
(3)對于集合A中元素a1、a2、…an,若an=2012,求數(shù)列{an}的前n項和Sn(用n表示).

查看答案和解析>>

已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),ai+aj與aj-ai至少一個屬于A,
(1)分別判斷集合M={0,2,4}與N=(1,2,3)是否具有性質(zhì)P,并說明理由;
(2)①求證:0∈A;②當n=3時,集合A中元素a1、a2、a3是否一定成等差數(shù)列,若是,請證明;若不是,請說明理由;
(3)對于集合A中元素a1、a2、…an,若an=2012,求數(shù)列{an}的前n項和Sn(用n表示).

查看答案和解析>>

已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),ai+aj與aj-ai至少一個屬于A,
(1)分別判斷集合M={0,2,4}與N=(1,2,3)是否具有性質(zhì)P,并說明理由;
(2)①求證:0∈A;②當n=3時,集合A中元素a1、a2、a3是否一定成等差數(shù)列,若是,請證明;若不是,請說明理由;
(3)對于集合A中元素a1、a2、…an,若an=2012,求數(shù)列{an}的前n項和Sn(用n表示).

查看答案和解析>>

(本小題滿分14分)

已知集合.對于A的一個子集S,若存在不大于的正整數(shù)m,使得對于S中的任意一對元素,都有,則稱S具有性質(zhì)P.

(Ⅰ)當時,試判斷集合是否具有性質(zhì)P?并說明理由.

(Ⅱ)若

若集合S具有性質(zhì)P,那么集合是否一定具有性質(zhì)P?并說明理由;

若集合S具有性質(zhì)P,求集合S中元素個數(shù)的最大值.

查看答案和解析>>

對于集合A,B,C,若A∪B=B∩C,則一定有

[  ]

A.A=B=C

B.

C.

D.以上都不對

查看答案和解析>>


同步練習冊答案