熱點(diǎn)問題一:數(shù)列 數(shù)列是高中數(shù)學(xué)的重要內(nèi)容.又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ).高考對本章的考查比較全面.等差數(shù)列.等比數(shù)列的考查每年都不會遺漏.有關(guān)數(shù)列的試題經(jīng)常是綜合題.經(jīng)常把數(shù)列知識和指數(shù)函數(shù).對數(shù)函數(shù)和不等式的知識綜合起來.試題也常把等差數(shù)列.等比數(shù)列.求極限和數(shù)學(xué)歸納法綜合在一起.探索性問題是高考的熱點(diǎn).常在數(shù)列解答題中出現(xiàn).本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想.在主觀題中著重考查函數(shù)與方程.轉(zhuǎn)化與化歸.分類討論等重要思想.以及配方法.換元法.待定系數(shù)法等基本數(shù)學(xué)方法. 近幾年來.高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面,(1)數(shù)列本身的有關(guān)知識.其中有等差數(shù)列與等比數(shù)列的概念.性質(zhì).通項(xiàng)公式及求和公式.(2)數(shù)列與其它知識的結(jié)合.其中有數(shù)列與函數(shù).方程.不等式.三角.幾何的結(jié)合.(3)數(shù)列的應(yīng)用問題.其中主要是以增長率問題為主.試題的難度有三個(gè)層次.小題大都以基礎(chǔ)題為主.解答題大都以基礎(chǔ)題和中檔題為主.只有個(gè)別地方用數(shù)列與幾何的綜合.與函數(shù).不等式的綜合作為最后一題.難度較大.(文科考查以基礎(chǔ)為主.有可能是壓軸題) 查看更多

 

題目列表(包括答案和解析)

(2007•上海)我們在下面的表格內(nèi)填寫數(shù)值:先將第1行的所有空格填上1;再把一個(gè)首項(xiàng)為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設(shè)第2行的數(shù)依次為B1,B2,…,Bn,試用n,q表示B1+B2+…+Bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對于任意非零實(shí)數(shù)q,c1+c3>2c2;
(3)請?jiān)谝韵聝蓚(gè)問題中選擇一個(gè)進(jìn)行研究 (只能選擇一個(gè)問題,如果都選,被認(rèn)為選擇了第一問).
①能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項(xiàng)c1,c2,…,cm (m≥3)成為等比數(shù)列?若能找到,m的值有多少個(gè)?若不能找到,說明理由.
②能否找到q的值,使得填完表格后,除第1列外,還有不同的兩列數(shù)的前三項(xiàng)各自依次成等比數(shù)列?并說明理由.

查看答案和解析>>

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對于數(shù)列,從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個(gè)命題:“對于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

21.我們在下面的表格內(nèi)填寫數(shù)值:先將第1行的所有空格填上1;再把一個(gè)首項(xiàng)為1,公比為的數(shù)列依次填入第一列的空格內(nèi);然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫其它空格.

 

第1列

第2列

第3列

第1行

1

1

1

1

第2行

 

 

 

 

第3行

 

 

 

 

 

 

 

 

 

 

 

 

(1) 設(shè)第2行的數(shù)依次為,試用表示的值;

(2) 設(shè)第3列的數(shù)依次為,求證:對于任意非零實(shí)數(shù),;

(3) 請?jiān)谝韵聝蓚(gè)問題中選擇一個(gè)進(jìn)行研究 (只能選擇一個(gè)問題,如果都選,被認(rèn)為選擇了第一問).

    ① 能否找到的值,使得(2) 中的數(shù)列的前項(xiàng) () 成為等比數(shù)列?若能找到,m的值有多少個(gè)?若不能找到,說明理由.

    ② 能否找到的值,使得填完表格后,除第1列外,還有不同的兩列數(shù)的前三項(xiàng)各自依次成等比數(shù)列?并說明理由.

查看答案和解析>>

我們在下面的表格內(nèi)填寫數(shù)值:先將第1行的所有空格填上1;再把一個(gè)首項(xiàng)為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設(shè)第2行的數(shù)依次為B1,B2,…,Bn,試用n,q表示B1+B2+…+Bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對于任意非零實(shí)數(shù)q,c1+c3>2c2;
(3)請?jiān)谝韵聝蓚(gè)問題中選擇一個(gè)進(jìn)行研究 (只能選擇一個(gè)問題,如果都選,被認(rèn)為選擇了第一問).
①能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項(xiàng)c1,c2,…,cm (m≥3)成為等比數(shù)列?若能找到,m的值有多少個(gè)?若不能找到,說明理由.
②能否找到q的值,使得填完表格后,除第1列外,還有不同的兩列數(shù)的前三項(xiàng)各自依次成等比數(shù)列?并說明理由.

查看答案和解析>>

我們在下面的表格內(nèi)填寫數(shù)值:先將第1行的所有空格填上1;再把一個(gè)首項(xiàng)為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫其它空格.
第1列第2列第3列第n列
第1行1111
第2行q
第3行q2
第n行qn-1
(1)設(shè)第2行的數(shù)依次為B1,B2,…,Bn,試用n,q表示B1+B2+…+Bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對于任意非零實(shí)數(shù)q,c1+c3>2c2;
(3)請?jiān)谝韵聝蓚(gè)問題中選擇一個(gè)進(jìn)行研究 (只能選擇一個(gè)問題,如果都選,被認(rèn)為選擇了第一問).
①能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項(xiàng)c1,c2,…,cm (m≥3)成為等比數(shù)列?若能找到,m的值有多少個(gè)?若不能找到,說明理由.
②能否找到q的值,使得填完表格后,除第1列外,還有不同的兩列數(shù)的前三項(xiàng)各自依次成等比數(shù)列?并說明理由.

查看答案和解析>>


同步練習(xí)冊答案