a,b,c為實數(shù).且a=b+c+1.證明:兩個一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個方程有兩個不相等的實數(shù)根. 證明 假設兩個方程都沒有兩個不等的實數(shù)根.則 ?Δ1=1-4b≤0,Δ2=a2-4c≤0, ∴Δ1+Δ2=1-4b+a2-4c≤0. ∵a=b+c+1,∴b+c=a-1. ∴1-4(a-1)+a2≤0, 即a2-4a+5≤0. 但是a2-4a+5=(a-2)2+1>0,故矛盾. 所以假設不成立.原命題正確.即兩個方程中至少有一個方程有兩個不相等的實數(shù)根. 查看更多

 

題目列表(包括答案和解析)

a,b,c為實數(shù),且a=b+c+1.證明:兩個一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個方程有兩個不相等的實數(shù)根.

查看答案和解析>>

a,b,c為實數(shù),且a=b+c+1.證明:兩個一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個方程有兩個不相等的實數(shù)根.

查看答案和解析>>

a,b,c為實數(shù),且a=b+c+1.證明:兩個一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個方程有兩個不相等的實數(shù)根.

查看答案和解析>>

已知實數(shù)m>1,定點A(-m,0),Bm,0),S為一動點,點SA,B兩點連線斜率之積為

   (1)求動點S的軌跡C的方程,并指出它是哪一種曲線;

   (2)當時,問t取何值時,直線與曲線C有且只有一個交點?

   (3)在(2)的條件下,證明:直線l上橫坐標小于2的點P到點(1,0)的距離與到直線x=2的距離之比的最小值等于曲線C的離心率.

查看答案和解析>>

已知實數(shù)m>1,定點A(-m,0),Bm,0),S為一動點,點SA,B兩點連線斜率之積為

   (1)求動點S的軌跡C的方程,并指出它是哪一種曲線;

   (2)當時,問t取何值時,直線與曲線C有且只有一個交點?

   (3)在(2)的條件下,證明:直線l上橫坐標小于2的點P到點(1,0)的距離與到直線x=2的距離之比的最小值等于曲線C的離心率.

查看答案和解析>>


同步練習冊答案