注意復(fù)習(xí)求線性回歸方程的方法.回歸分析方法.獨(dú)立性檢驗(yàn)的方法及其應(yīng)用問(wèn)題. 查看更多

 

題目列表(包括答案和解析)

改革開(kāi)放以來(lái),我國(guó)高等教育事業(yè)有了突飛猛進(jìn)的發(fā)展,有人記錄了某村2001到2005年五年間每年考入大學(xué)的人數(shù),為了方便計(jì)算,2001年編號(hào)為1,2002年編號(hào)為2,…,2005年編號(hào)為5,數(shù)據(jù)如下:
年份(x) 1 2 3 4 5
人數(shù)(y) 3 5 8 11 13
(1)從這5年中隨機(jī)抽取兩年,求考入大學(xué)的人數(shù)至少有1年多于10人的概率.
(2)根據(jù)這5年的數(shù)據(jù),利用最小二乘法求出y關(guān)于x的回歸方程
y
=
b
x+
a
,并計(jì)算第8年的估計(jì)值.
參考:用最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-b
.
x

查看答案和解析>>

一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些會(huì)有缺損.按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下:
轉(zhuǎn)速x(轉(zhuǎn)/s) 18 16 14 12
每小時(shí)生產(chǎn)有缺損零件數(shù)y(件) 11 9 7 5
(Ⅰ)作出散點(diǎn)圖;
(Ⅱ)如果y與x線性相關(guān),求出回歸方程;
(Ⅲ)如果實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為8個(gè),那么機(jī)器運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
用最小二乘法求線性回歸方程的系數(shù)公式:
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n(
.
x
)
2
a=
.
y
-b
.
x

查看答案和解析>>

已知x,y之間的一組數(shù)據(jù)如下表:
x 1 3 6 7 8
y 1 2 3 4 5
(1)以x為橫坐標(biāo),y為縱坐標(biāo)在直角坐標(biāo)系中畫(huà)出散點(diǎn)圖,并說(shuō)明這兩個(gè)變量之間的關(guān)系是正相關(guān)關(guān)系還是負(fù)相關(guān)關(guān)系.
(2)求線性回歸方程.(參考公式:
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a
=
.
y
-
b
.
x
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n(
.
x
)
2

查看答案和解析>>

在某次試驗(yàn)中,有兩個(gè)試驗(yàn)數(shù)據(jù)x,y統(tǒng)計(jì)的結(jié)果如下面的表格:
x 1 2 3 4 5
y 2 3 4 4 5
(1)在給出的坐標(biāo)系中畫(huà)出x,y的散點(diǎn)圖;
(2)用最小二乘法求線性回歸方程
?
y
=
?
b
x+
?
a
;
(3)根據(jù)所求回歸方程預(yù)測(cè)當(dāng)x=6時(shí)y的值.

查看答案和解析>>

精英家教網(wǎng)隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買家庭轎車已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車一族非常關(guān)心的問(wèn)題.某汽車銷售公司作了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限x與所支出的總費(fèi)用y(萬(wàn)元)有如下的數(shù)據(jù)資料:
使用年限x 2 3 4 5 6
總費(fèi)用y 2.2 3.8 5.5 6.5 7.0
(1)在給出的坐標(biāo)系中做出散點(diǎn)圖;
(2)求線性回歸方程
y
=
b
x+
a
中的
a
、
b

(3)估計(jì)使用年限為10年時(shí),車的使用總費(fèi)用是多少?
(最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
-2
x
a
=
.
y
-
b
.
x
).

查看答案和解析>>


同步練習(xí)冊(cè)答案