題目列表(包括答案和解析)
(本小題滿分16分)已知函數(shù)f(x)=是定義在R上的奇函數(shù),其值域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052503512729687978/SYS201205250353498437943046_ST.files/image002.png">.
(1) 試求a、b的值;
(2) 函數(shù)y=g(x)(x∈R)滿足:
條件1: 當(dāng)x∈[0,3)時,g(x)=f(x);條件2: g(x+3)=g(x)lnm(m≠1).
① 求函數(shù)g(x)在x∈[3,9)上的解析式;
② 若函數(shù)g(x)在x∈[0,+∞)上的值域是閉區(qū)間,試探求m的取值范圍,并說明理由.
(本小題滿分16分)
探究函數(shù),x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中y值隨x值變化的特點(diǎn),完成下列問題:
(1)若函數(shù),(x>0)在區(qū)間(0,2)上遞減,則在 上遞增;
(2)當(dāng)x= 時,,(x>0)的最小值為 ;
(3)試用定義證明,(x>0)在區(qū)間(0,2)上遞減;
(4)函數(shù),(a>0, 且a≠1)有最值嗎?是最大值還是最小值?此時x為何值?(只寫結(jié)果,不要求寫過程).
(本小題滿分16分)
探究函數(shù),x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中y值隨x值變化的特點(diǎn),完成下列問題:
(1)若函數(shù),(x>0)在區(qū)間(0,2)上遞減,則在 上遞增;
(2)當(dāng)x= 時,,(x>0)的最小值為 ;
(3)試用定義證明,(x>0)在區(qū)間(0,2)上遞減;
(4)函數(shù),(a>0, 且a≠1)有最值嗎?是最大值還是最小值?此時x為何值?(只寫結(jié)果,不要求寫過程).
(本小題滿分16分)
探究函數(shù),x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中y值隨x值變化的特點(diǎn),完成下列問題:
(1)若函數(shù),(x>0)在區(qū)間(0,2)上遞減,則在 上遞增;
(2)當(dāng)x= 時,,(x>0)的最小值為 ;
(3)試用定義證明,(x>0)在區(qū)間(0,2)上遞減;
(4)函數(shù),(a>0, 且a≠1)有最值嗎?是最大值還是最小值?此時x為何值?(只寫結(jié)果,不要求寫過程).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com