平面向量的基本定理:如果e1和e2是同一平面內的兩個不共線向量.那么對該平面內的任一向量a.有且只有一對實數(shù)..使a=e1+e2.如(1)若 .則 (答:),(2)下列向量組中.能作為平面內所有向量基底的是 A. B. C. D. 已知分別是的邊上的中線,且,則可用向量表示為 (答:),(4)已知中.點在邊上.且..則的值是 查看更多

 

題目列表(包括答案和解析)

按照平面向量的基本定理,把c=(-1,0)用a=(1,0)和b=(1,1)表示出來.

查看答案和解析>>

出于應用方便和數(shù)學交流的需要,我們教材定義向量的坐標如下:取
e1
e2
為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數(shù)λ,μ,使得
a
=λ
e1
e2
,我們就把實數(shù)對(λ,μ)稱作向量
a
的坐標.并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.現(xiàn)在我們用
i
j
表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
,
j
>=
π
3
,
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量
i
j
做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量
a
的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.

查看答案和解析>>

是兩個不共線的非零向量.

(1)若==,=,求證:A,B,D三點共線;

(2)試求實數(shù)k的值,使向量共線. (本小題滿分13分)

【解析】第一問利用=()+()+==得到共線問題。

第二問,由向量共線可知

存在實數(shù),使得=()

=,結合平面向量基本定理得到參數(shù)的值。

解:(1)∵=()+()+

==    ……………3分

     ……………5分

又∵AB,D三點共線   ……………7分

(2)由向量共線可知

存在實數(shù),使得=()   ……………9分

=   ……………10分

又∵不共線

  ……………12分

解得

 

查看答案和解析>>

出于應用方便和數(shù)學交流的需要,我們教材定義向量的坐標如下:取數(shù)學公式數(shù)學公式為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量數(shù)學公式,則存在唯一的一對實數(shù)λ,μ,使得數(shù)學公式=數(shù)學公式數(shù)學公式,我們就把實數(shù)對(λ,μ)稱作向量數(shù)學公式的坐標.并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.現(xiàn)在我們用數(shù)學公式數(shù)學公式表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<數(shù)學公式,數(shù)學公式>=數(shù)學公式,
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量數(shù)學公式數(shù)學公式做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量數(shù)學公式的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.

查看答案和解析>>

出于應用方便和數(shù)學交流的需要,我們教材定義向量的坐標如下:取
e1
e2
為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數(shù)λ,μ,使得
a
=λ
e1
e2
,我們就把實數(shù)對(λ,μ)稱作向量
a
的坐標.并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.現(xiàn)在我們用
i
j
表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
,
j
>=
π
3

(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量
i
j
做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量
a
的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.

查看答案和解析>>


同步練習冊答案