完全相同的4個(gè)小球.上面分別標(biāo)有數(shù)字1.-1.2.-2.將其放入一個(gè)不透明的盒子中搖勻.再從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻).把第一次.第二次摸到的球上標(biāo)有的數(shù)字分別記作m.n.以m.n分別作為一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo).求點(diǎn)(m.n)不在第二象限的概率. 得 分評卷人 查看更多

 

題目列表(包括答案和解析)

完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字1,-1,2,-2,將其放入一個(gè)不透明的盒子中搖勻,在從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻).把第一次,第二次摸到的球上標(biāo)有的數(shù)字分別記作m,n,以m,n分別作為一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo),求點(diǎn)(m,n)不在第二象限的概率.(用樹狀圖或列表法求解)

查看答案和解析>>

完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字1、-1、2、-2,將其放入一個(gè)不透明的盒子中搖勻,再從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻).把第一次、第二次摸到的球上標(biāo)有的數(shù)字分別記作m、n,以m、n分別作為一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo),定義點(diǎn)(m,n)在反比例函數(shù)y=
kx
上為事件Qk(-4≤k≤4,k為整數(shù)),當(dāng)Qk的概率最大時(shí),則k的所有可能的值為
±2
±2

查看答案和解析>>

完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字1,-1,2,-2,將其放入一個(gè)不透明的盒子中搖勻,在從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻).把第一次,第二次摸到的球上標(biāo)有的數(shù)字分別記作m,n,以m,n分別作為一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo),求點(diǎn)(m,n)不在第二象限的概率.(用樹狀圖或列表法求解)

查看答案和解析>>

完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字1、-1、2、-2,將其放入一個(gè)不透明的盒子中搖勻,再從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻),把第一次、第二次摸到的球上標(biāo)有的數(shù)字分別記作m、n,以m、n分別作為一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo),求點(diǎn)(m,n)不在第二象限的概率。(用樹狀圖或列表法求解)

查看答案和解析>>

完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字1、-1、2、-2,將其放入一個(gè)不透明的盒子中搖勻,再從中隨機(jī)摸球兩次(第一次摸出球后放回?fù)u勻).把第一次、第二次摸到的球上標(biāo)有的數(shù)字分別記作m、n,以m、n分別作為一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo),求點(diǎn)(mn不在第二象限的概率.(用樹狀圖或列表法求解)

查看答案和解析>>

一、選擇題

1.A 2.B 3.C 4.B 5.B 6.C 7.C 8.A 9.B 10.D 11.B 12.C

二、填空題

13.9  14.  15. BD=CD,OE=OF,DE∥AC等  16.4  17.15

三、解答題

18.

(1)解:   ................................................ 1分

   ...................................................... 2分

  ....................................................... 3分

(2)解:解①得>-2  ................................................ 4分

解②得<3  .................................................. 5分

∴此不等式組的解集是-2<x<3    ................................... 6分

解集在數(shù)軸上表示正確  .............................................. 7分

19.

(1)證明:∵AB∥DE,∴∠B=∠DEF

∵AC∥DF,∴∠F=∠ACB  ............................................ 1分

∵BE=CF,∴BE+EC= CF + EC即BC=EF   ............................... 2分

∴△ABC≌△DEF

∴AB=DE............................. 3分

(2)解:過點(diǎn)O作OG⊥AP于點(diǎn)G

連接OF  ........................... 4分

∵ DB=10,∴ OD=5

∴ AO=AD+OD=3+5=8

∵∠PAC=30°

∴ OG=AO=cm............... 5分

∵ OG⊥EF,∴ EG=GF

∵ GF= 

∴ EF=6cm  ......................... 7分

20.解:組成的所有坐標(biāo)列樹狀圖為:

 

.................... 5分

或列表為:

.................... 5分

方法一:根據(jù)已知的數(shù)據(jù),點(diǎn)不在第二象限的概率為

方法二:1-  ................................................. 8分

21.解:設(shè)康乃馨每支元,水仙花每支元   ............................. 1分

由題意得:    ......................................... 4分

解得:  ..................................................... 6分

第三束花的價(jià)格為  ................................ 7分

答:第三束花的價(jià)格是17元.   ...................................... 8分

22.解:(1)設(shè)CD為千米,

由題意得,∠CBD=30°,∠CAD=45°

∴AD=CD=x  .................... 1分

在Rt△BCD中,tan30°=

∴ BD=  ................... 2分

AD+DB=AB=40

  ............... 3分

解得 ≈14.7

∴ 牧民區(qū)到公路的最短距離CD為14.7千米.  ......................... 4分

(若用分母有理化得到CD=14.6千米,可得4分)

(2)設(shè)汽車在草地上行駛的速度為,則在公路上行駛的速度為3,

在Rt△ADC中,∠CAD=45°,∴ AC=CD

方案I用的時(shí)間........................ 5分

方案II用的時(shí)間..................................... 6分

= .................................................... 7分

>0

>0  ...................................................... 8分

∴方案I用的時(shí)間少,方案I比較合理  ............................... 9分

23.解:(1)  .......................................... 1分

解得:   .................................................. 2分

∴點(diǎn)P的坐標(biāo)為(2,)  ........................................... 3分

(2)將代入

,即OA=4................................................... 4分

做PD⊥OA于D,則OD=2,PD=2

∵ tan∠POA=

∴ ∠POA=60°   ................................................... 5分

∵ OP=

∴△POA是等邊三角形.  ............ 6分

 

(3)① 當(dāng)0<t≤4時(shí),如圖1

在Rt△EOF中,∵∠EOF=60°,OE=t

∴EF=t,OF=t

∴S=?OF?EF=.............. 7分

當(dāng)4<t<8時(shí),如圖2

設(shè)EB與OP相交于點(diǎn)C

易知:CE=PE=t-4,AE=8-t

∴AF=4-,EF=(8-t)  

∴OF=OA-AF=4-(4-t)=t

∴S=(CE+OF)?EF

=(t-4+t)×(8-t)

=-+4t-8................ 8分

② 當(dāng)0<t≤4時(shí),S=, t=4時(shí),S最大=2

當(dāng)4<t<8時(shí),S=-+4t-8=-(t-)+ 

t=時(shí),S最大=

>2,∴當(dāng)t=時(shí),S最大=........................... 9分

24.解:(1)設(shè)拋物線的解析式為  ......................... 1分

將A(-1,0)代入:       ∴   .................... 2分

∴ 拋物線的解析式為,即:.............. 3分

(2)是定值,  ........................................... 4分

∵ AB為直徑,∴ ∠AEB=90°,∵ PM⊥AE,∴ PM∥BE

∴ △APM∽△ABE,∴  ①

同理:   ②  .............................................. 5分

① + ②: .................................... 6分

(3)∵ 直線EC為拋物線對稱軸,∴ EC垂直平分AB

∴ EA=EB

∵ ∠AEB=90°

∴ △AEB為等腰直角三角形.

∴ ∠EAB=∠EBA=45° ........... 7分

如圖,過點(diǎn)P作PH⊥BE于H,

由已知及作法可知,四邊形PHEM是矩形,

∴PH=ME且PH∥ME

在△APM和△PBH中

∵∠AMP=∠PHB=90°, ∠EAB=∠BPH=45°

∴ PH=BH

且△APM∽△PBH

 ①.......... 8分

在△MEP和△EGF中,

∵ PE⊥FG,  ∴ ∠FGE+∠SEG=90°

∵∠MEP+∠SEG=90°  ∴ ∠FGE=∠MEP

∵ ∠PME=∠FEG=90° ∴△MEP∽△EGF

    ②

由①、②知:.............................................. 9分

(本題若按分類證明,只要合理,可給滿分)

 

 

 

 

 


同步練習(xí)冊答案