題目列表(包括答案和解析)
在中,內(nèi)角A,B,C所對的分別是a,b,c。已知a=2,c=,cosA=.
(I)求sinC和b的值;
(II)求的值。
【考點定位】本小題主要考查同角三角函數(shù)的基本關(guān)系、二倍角的正弦與余弦公式、兩角和余弦公式以及正弦定理、余弦定理等基礎(chǔ)知識,考查基本運算求解能力.
(本小題滿分10分)
中,為邊上的一點,,,,求.
【命題意圖】本試題主要考查同角三角函數(shù)關(guān)系、兩角和差公式和正弦定理在解三角形中的應(yīng)用,考查考生對基礎(chǔ)知識、基本技能的掌握情況.
(本小題滿分10分)
中,為邊上的一點,,,,求.
【命題意圖】本試題主要考查同角三角函數(shù)關(guān)系、兩角和差公式和正弦定理在解三角形中的應(yīng)用,考查考生對基礎(chǔ)知識、基本技能的掌握情況.
某興趣小組為了研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,分別到氣象站和醫(yī)院抄錄了1至6月份每月15日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性的回歸方程是否理想?
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。
(1)問中∵,∴,…………………1分
∵,得到三角關(guān)系是,結(jié)合,解得。
(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com